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The famous results of Carey and Clampitt [N. Carey and D. Clampitt,Aspects of well-formed scales, Music
Theory Spectr. 11 (1989), pp. 187–206] focus on scales generated by one interval and explain why some
of these scales are preferable to others. Those preferable are called well-formed (WF). Their explanation is
based on a theorem showing equivalence between ‘symmetry’ and ‘closure’. In this paper, we propose and
prove a generalization of this theorem. Instead of scales with a single generator, tone systems generated by
two intervals are considered. In addition, various examples are given to illustrate the developed theoretical
framework. Among them, the ancient Indian 22-śruti system is interpreted as a WF two-dimensional tone
system generated by the fifth and the śruti. Finally, we draft open problems pertaining to the presented
theory.
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1. Introduction

Consider the following chain of tones generated by the perfect fifth:

· · · −→ B♭ −→ F −→ C −→ G −→ D −→ A −→ E −→ B −→ F♯ −→ · · ·

Five- or seven-note segments of this chain underlie ubiquitous tone systems: the anhemitonic
pentatonic scale and the diatonic heptatonic scale. Why does six-note segment not form a ‘good’
scale?
There are several equivalent answers to this question. In their 1989 article [2], Carey and

Clampitt presented two of them. They introduced two conditions – ‘the closure condition’ (CC)
and ‘the symmetry condition’ (SC) – and showed that they are equivalent. They also coined the
term ‘well-formed’ (WF) to name the scales that meet the two conditions.1
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2 M. Žabka

The CC is more straightforward. It expresses the fact that the interval between the limiting
points of the generation, i.e. between the starting tone and the tone following the last generated
one (or, the last one and the one preceding the first one), does not contain any of the other tones.
None of the tones of the pentatonic scale falls between B♭ and A, and similarly, none of the tones
of the diatonic scale lies between B♭ and B. On the other hand, there are several tones of the
‘hexatonic’ fifth-generated scale that occupy a position within the interval B♭ and E (or E and
B♭). We will say that the former scales are and the latter one is not tight.
The small2 interval between the limiting points is called comma. Since there is no tone included

within the comma, we may set the limiting points equivalent. This leads to an equivalence relation
on the potentially infinite set of the generated tones (and their intervals). A symmetrical finite
structure3 arises from this equivalence relation. For example, in the case of the diatonic scale,
the equivalence relation is given by 7φ ≡ 0, where φ denotes the perfect fifth. Both intervals
(C, G) and (B, F ), though generated differently as φ and (−6φ) and being very different in
their pitch realizations, belong to the same equivalence class [φ], i.e. are considered structurally
same.
The SC (or ‘WF’) reflects the relationship between the generation patterns of the intervals and

their spans4 in the pitch realization of the scale.5 In aWF scale, any two intervals have equivalent
generation patterns if and only if they have same spans. Consider the intervals (C, E) and (A, C)

in the diatonic scale of C major generated by the fifth. Their generation patterns 4φ and (−3φ)

are equivalent. At the same time, they both span two steps in the scale. If we, on the other hand,
omitted the last generated tone and took the ‘Pythagorean hexatonic’ scale, the generation pattern
4φ of the interval (C, E) would be equivalent to the generation pattern (−2φ) of the interval
(D, C). However, their spans would be very different: 2 and 5, respectively.
Carey and Clampitt’s theorem6 states that the SC (i.e. well-formedness) and the CC (i.e.

tightness) are equivalent.

Theorem 1.1 (Carey and Clampitt) Let S be a tone system generated by a single interval. Then
S is tight if and only if it is WF.

Our endeavour is to generalize this theorem for two dimensions. Let us illustrate our gener-
alization on an example. Instead of a line of fifths, consider the Tonnetz7 generated by both the
fifth φ and the major third θ (Figure 1). In the diatonic system, two-thirds are equivalent to a
fifth, i.e. 2θ ≡ φ, which leads to the first comma κ1 = (−φ + 2θ). Similarly, adding a third to
three-fifths results in a small interval. This gives the second comma κ2 = (−3φ − θ). The equiv-
alence relation implied by the commas partitions the infinite set of tones of the Tonnetz into seven
equivalence classes. One of them includes all the D’s positioned on the intersections of commas
depicted as double dotted-lines in our diagrams. The seven classes are the nodes of an underlying
symmetrical structure of the tone system. We will call this structure generic Tonnetz. Figure 2
shows the generic Tonnetz of this tone system.
Subsequently, we select a representative of each equivalence class. The selection of the repre-

sentatives is depicted on our diagram by circles drawn around the tone letters. We always select
representatives in accordance with the tiling implied by the commas. The tone D plays a special
role and we will call it extremity.8 The selection of the representatives expresses how the tones
are generated. For example, by selecting 1B, instead of B, we determined that the corresponding
tone is generated as a fifth down and a third up, rather than three-fifths up from the extremity D.
Finally, if we decide on the pitch of the generators (e.g. φ = log2(3/2) and θ = log2(5/4)), we
fully specify a generated tone system (GTS).9
A generalized version of the CC can be easily conceived and verified for this particular case:

the pitches of all the inner tones lie outside the cluster of the pitches of the limits of the sys-
tem. (We call limits the tones D, 1D♭, 1D, and 2D♯.) The SC can also be introduced: the
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Journal of Mathematics and Music 3

Figure 1. The diatonic system with two generators.

Figure 2. The diatonic system as a two-dimensional g-Tonnetz.

intervals given by the generic Tonnetz should be in a one-to-one relation to their spans. For exam-
ple, consider the intervals (1A, C) and (C, 1E). They belong to the same equivalence class as
[φ − θ ] = [φ − θ + κ1] = [θ ]. Similarly, the spans of the intervals are also the same; they are
both equal to 2. It can be directly verified that this GTS isWF. It models the diatonic scale in just
intonation.

2. Formal framework

In this section, we present technical details of the formal framework of the theory. The basic
mathematical conventions assumed in the presentation are summarized in Appendix 1. In
addition, Appendix 2 contains an extended example illustrating all main theoretical concepts
introduced.
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4 M. Žabka

2.1. Generic Tonnetz

Definition 2.1 LetG = (T , I, int) be a commutative GIS and assume that group I is generated
by a finite subset X. A generic Tonnetz (g-Tonnetz) is the arrow-labelled directed graph N =
(T , A, X, int∗), whereA denotes the pre-image ofX under int, i.e.A = int−1[X], and int∗ denotes
the restriction of int to A, i.e. int∗ = int|A. Further, we say that dimension of the g-Tonnetz N is
n if X has exactly n distinct elements.10

The asterisk will be omitted in the notation of int∗ if there is no risk of confusion.

Example 2.2 The model of the diatonic scale in just intonation described above can be
expressed within our formal framework in the following way. The seven tones of the GIS
are T = {c, d, e, f, g, a, b} and the group of intervals is isomorphic to seven-element cyclic
group I ∼= Z7. The int function assigns the usual diatonic interval to any pair of tone letters,
e.g. int(c, e) = 2. The set of generators comprises the fifth and the third: X = {2, 4}. Then,
the set of arrows of the g-Tonnetz comprises all pairs of tones corresponding to the intervals 2
and 4: A = {(c, e), (d, f ), . . . , (c, g), (d, a), . . .}. The resulting g-Tonnetz is shown in Figure 2.
Mazzola [10] describes a structurewhich is somewhat dual to this g-Tonnetz and calls it a ‘harmonic
strip’.11
The arrow labelling int∗ distinguishes the third-arrows from the fifth-arrows. In Figure 2, the

dotted lines denote third arrows and the regular ones the fifth arrows. Later, we will usually omit
this explicit distinction if the labelling is clear from the context.

Lemma 2.3 Consider two commutative GISsG1 = (T1, I1, int1) andG2 = (T2, I2, int2). Further
assume that Ii is generated by its finite subsetXi andNi = (Ti, int−1i [Xi], Xi, inti ) are the related
g-Tonnetze, for i = 1, 2. Then the following conditions are equivalent.

(1) There is a group isomorphism between I1 and I2 mapping X1 onto X2.
(2) There is a GIS-isomorphism between G1 and G2 mapping X1 onto X2.
(3) N1 and N2 are isomorphic.

Lemma 2.4 Consider an abelian group I generated by its subsetX. Then there exist a set T and
a mapping int : T × T → I such that G = (T , I, int) is a commutative GIS. This GIS is unique,
up to isomorphism. As a consequence, the g-Tonnetz N(I ; X) = (T , int−1[X], X, int) also exists
and it is, up to isomorphism, unique.

The two previous lemmas12 imply that, up to isomorphism, a GIS is determined by the under-
lying group of intervals and a g-Tonnetz by the underlying group of intervals and the selected set
of generators of the group. Therefore, a complete study of the abelian groups and their generating
subsets is sufficient for the complete understanding of the g-Tonnetze.
For our study of the g-Tonnetze, we will rely on presentations of abelian groups as quotient

groups of free abelian groups.

Lemma 2.5 Let an abelian group I be generated by the finite set X of n elements. Then, there
exists a subset K of Z[X] with m elements where m ≤ n and Z[X]/⟨K⟩ is a presentation of I . If
I is finite, then m = n.

Definition 2.6 Let X = {ξ1, . . . , ξn} be a set, K = {κ1, . . . , κm} be a subset of Z[X] and
n ≤ m. Assume the g-Tonnetz N = N(Z[X]/⟨K⟩; X) from Lemma 2.4. We say that the elements
κi , 1 ≤ i ≤ m are commas andK is a set of commas ofN . The g-TonnetzN is denoted as gT(X|K).
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Figure 3. Diagram of mappings related to a g-Tonnetz.

According to Lemma 2.5, the assumptions of the previous definition cover, up to isomorphism,
any g-Tonnetz and we may limit our investigation of the g-Tonnetze to those of this type. In other
words, any g-Tonnetz is fully determined, up to isomorphism, by the set of generators and a set
of commas. Figure 3 shows the mappings related to a g-Tonnetz. The arrows with curved tails
denote the natural injections of the subsets A and X in their supersets T × T and I , respectively.

2.2. Definition of GTS

Definition 2.7 Let T and X be finite non-empty sets, K be a subset of the free abelian group
Z[X] freely generated by X, and let both K and X have exactly n elements. An n-dimensional
GTS is a sextuple (T , X, K, int, spec, pitch) where the following conditions are satisfied.

(1) int : T × T → Z[X]/⟨K⟩ is a mapping with the following properties:
(i) int(t, u)int(u, v) = int(t, v) for all t, u, v ∈ T .
(ii) For any t ∈ T and α ∈ Z[X]/⟨K⟩, there is a unique u ∈ T such that int(t, u) = α.

(2) spec : T → Z[X] is a mapping with the following property:
(i) [spec(t)] + int(t, u) = [spec(u)], for any t, u ∈ T .

(3) pitch : X → R/Z is a mapping.

The elements of T ,X,K , and I = Z[X]/⟨K⟩ are called tones, generators, commas, and intervals,
respectively. The mappings int, spec, and pitch are called interval function, specifying function,
and pitch function, respectively.

The first condition assures that (T , I, int) is a commutative GIS. In fact, this definition extends
the concept of g-Tonnetz. Let e denote the canonic projection from Z[X] to Z[X]/⟨K⟩, i.e.
e: Z[X] → Z[X]/⟨K⟩, ξ +→ [ξ ]. Then (T , int−1[e[X]], e[X], int) is a g-Tonnetz. A GTS differs
from a g-Tonnetz in that it specifies how the tones are generated from the generators and how
the generators are tuned. While the g-Tonnetz is a perfectly symmetrical structure, the specifying
function and the pitch function bring the ‘imperfectness’ into the picture. This is illustrated in the
following example.

Example 2.8 Consider the Pythagorean heptatonic (e.g. C major scale). The underlying
g-Tonnetz is a graph consisting of seven nodes connected by arrows on a circle of fifths. In
this graph, there is no difference between the perfect fifth (C, G) and the diminished fifth (B, F ),
both are depicted as fifth arrows. If the information about the specifying function and the pitch
function is added, the asymmetry between the two kinds of fifth becomes explicit.

2.3. Comma-demarcated GTS

For a given g-Tonnetz, the tones may be generated (i.e. the specifying function can be defined)
in many ways. However, only some of them are of real interest. In the present paper, a basic
requirement is that the values of the specifying function are ‘demarcated’ within Z[X] by
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6 M. Žabka

Figure 4. A non-demarcated GTS.

the commas. The demarcatedness, introduced in the next definition, means that we take a
block P(K) of elements of Z[X] within a parallelogram13 delimited by the selected set of
commas.14

Definition 2.9 Assume an n-dimensional GTS S with a set of commas K = {κ1, . . . , κn}.
Denote:

P(K) =
{

ζ ∈ Z[X]|ζ =
∑

κ∈K

r(κ)κ, r(κ) ∈ [0, 1)
}

We say that S is comma-demarcated (or, simply, demarcated) if there is a tone e ∈ T such that
spec[T ] = spec(e) + P(K). Further, we say that:

(1) e is the extremity of S;
(2) t ∈ T is an edge tone (or,more precisely, a κ-edge tone) if spec(t) = spec(e) + rκ , for some

κ ∈ K and r ∈ [0, 1);
(3) t ∈ T is an inner tone if spec(t) = spec(e) + ∑

κ∈K r(κ)κ and r(κ) ̸= 0 for all κ ∈ K;
(4) the elements spec(e) + ∑

κ∈K r(κ)κ ∈ Z[X] for r(κ) ∈ {0, 1} are called limits of S.15

Example 2.10 TheGTS shown in Figure 1 is demarcated as aremost of the other GTSs discussed
later. Figure 4 illustrates a GTS which is non-demarcated, although musically very interesting. It
models the Hungarian scale (A minor or E major). Moreover, not only this selection of commas
fails to provide a demarcated GTS. In general, it is not possible to select the commas in such a
way that the resulting demarcated GTS would model the Hungarian scale.16

Example 2.11 Figure 5 shows two of the possible interpretations of the 12-tone chromatic scale
as a demarcated GTS. In both cases, there are some edge tones besides the extremity: D in the
first and C and 1E in the second approach. Note also that the underlying g-Tonnetz of these GTSs
are same as the subgroups generated by the sets of commas are equal.
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Journal of Mathematics and Music 7

Figure 5. Chromatic scale as a two-dimensional GTS – two approaches.

Example 2.12 The extremity plays a special role in the GTS; it participates the most on the
asymmetries of the pitch realization of the underlying g-Tonnetz. Consider the one-dimensional
fifth-generated Pythagorean diatonic scale with the limits B♭ and B and with the extremity at B.
The same system of tones can be interpreted as a GTS having the limitsF andF♯ and the extremity
at F . The tones F and B, the extremities of these two GTSs, are in a sense the most problematic
ones because their pitch realizations make up the dissonant tritone. On the other hand, the toneD
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8 M. Žabka

is placed in the centre of the system, positioned furthest from the dissonant pair of tones (F, B).17
This reflects the common understanding of the tone D as the central tone.

Example 2.13 However, the position of the tone D is very different in the diatonic scale in just
intonation shown in Figure 1. There it takes the role of the extremity. This is in line with the well-
known problem of the just intonation:D participates on the impure fifth (D, 1A) problematizing
theD minor triad. Sometimes, the problem is mitigated by replacingD with 1D (which improves
D minor but worsensGmajor). On the other hand, the central positions are occupied by the tones
C and E. This corresponds with the central role of the C major triad and its dual Aminor triad.18

I dare to hypothesize that the considerations drafted in the two previous examples may explain
why the Dorian was the most preferred and most frequent modus in the modal repertoire during
the times ruled by the Pythagorean tuning and why the emphasis moved towards the major–minor
system of the later period when the just intonation and its approximations emerged.

2.4. Transposed GTSs and neighbouring GTSs

Consider the C major and F major scales in the Pythagorean tuning. There are two ways of
modelling their relation within our theoretical framework. First, we may say that F major is the
GTS with limits B♭ and B and the extremity at B♭, and similarly, C major is the GTS with limits
F and F♯ with the extremity at F (Figure 6(a) and (b)). This way, C major is a transposition of F
major. However, there is another way of looking at the relation between the two tone systems: C
major can also be modelled as a GTS with the same limits as F major, i.e. B♭ and B, but having
the extremity positioned at B (Figure 6(c)). In that case, we say that the GTSs are neighbouring.
As another example of neighbouringGTSs (in a two-dimensional case) consider theGTSs of the

diatonic scale with extremities at D or at 1D. (We mentioned the diatonic system with extremity
1D in Example 2.13 as a possible approach to mitigate the issue with the impure fifth (D, 1A).)
TheseGTSs are neighbouring, as well.19 In a neighbouringGTS, some of the commas are replaced
by their opposites and the specifying function is changed correspondingly. The following lemma

Figure 6. Transposed and neighbouring GTSs.
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Journal of Mathematics and Music 9

deals with the technical details of the construction of neighbouring GTSs. The formal definition
follows.

Lemma 2.14 Let S = (T , X, K, int, spec, pitch) be a demarcated GTS with the extremity e ∈ T

and let N : K → {−1, 1} be a mapping. Assume the following conditions.
(1) KN = {N(κ)κ|κ ∈ K}.
(2) A mapping specN : T → Z[X] is defined in the following way. For any t ∈ T , spec(t) −

spec(e) = ∑
κ∈K rt (κ)κ , consider the setK(t) = {κ ∈ K|rt (κ) = 0, N(κ) = −1}. The map-

ping specN assigns the value specN(t) = spec(t) + ∑
κ∈K(t) κ .

Then SN = (T , X, KN, int, specN, pitch) is a demarcated GTS.

Proof The first condition of Definition 2.7 follows from the fact that Z[X]/⟨K⟩ = Z[X]/⟨KN ⟩.
As any κ ∈ K is in the same class as 0, we have that [specN(t)] = [spec(t)]. This implies the
second condition of the definition. Therefore, SN is a GTS. The demarcatedness results from the
following. For any tone t , spec(t) is not in specN(e) + P(KN) if and only if there are some κi’s
for which rt (κi ) = 0 andN(κi ) = −1. The mapping specN makes the required corrections by the
κi’s so that specN(t) belongs to specN(e) + P(KN). !

Definition 2.15 Assume the notation from Lemma 2.14. The GTSs S and SN are called
neighbouring.

It is a little more straightforward to define the transposition formally. The next definition gives
the details. Note that it does not require the GTS to be demarcated to define its transposition.
However, it is easy to see that if a GTS is demarcated, then all its transpositions are demarcated.

Definition 2.16 Let S = (T , X, K, int, spec, pitch) be a GTS and ζ be any element of the group
Z[X]. Consider themapping defined as specζ (t) = spec(t) + ζ for all t ∈ T . Thenwe say that the
GTSSζ = (T , X, K, int, specζ , pitch) is a transposition (or,more specifically, the ζ -transposition)
of S.

2.5. Pitch-related properties: size and span

In Definition 2.7, the pitch function was required to be defined for the generators only. However,
it follows from the basic properties of free groups that there is a unique group homomorphism
pitch∗:Z[X] → R/Z such thatpitch(ξ) = pitch∗(ξ) for all ξ ∈ X. In notating this homomorphism,
we omit the asterisk and also call it a pitch function if there is no risk of confusion.

Definition 2.17 Consider two elements α, β ∈ Z[X]. The size of the ordered pair (α, β) is the
number r , 0 ≤ r < 1, for which pitch(α) ⊕ r = pitch(β), i.e. r = pitch(β − α). We denote the
size of (α, β) by size(α, β). Further, if α = spec(a) and β = spec(b) for tones a, b ∈ T , we also
say that the size of the pair of tones (a, b) is r and write size(a, b) = r .

Definition 2.18 Assume a GTS S.We define a ternary relation ‘between’onZ[X]. Let α1, α2, α3
be elements ofZ[X].We say that α2 is between α1 and α3 and write▹ (α1, α2, α3) if the following
condition holds in R.

size(α1, α2) + size(α2, α3) = size(α1, α3)

Further, if αi = spec(ti) for ti ∈ T and i = 1, 2, 3, then we also say that the tone t2 is between
the tones t1 and t3 and write ▹ (t1, t2, t3).
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10 M. Žabka

The regular addition of real numbers in the condition from the previous definition cannot be
replaced by the addition modulo 1. Informally, tone u is between the tones t and v if it follows
t and is followed by v (clockwise) on the standard clock-face representation of the pitch domain
R/Z. Notice that, for three distinct tones, u is between t and v if and only if it is not between v

and t . The relation ▹ enables us to define the span of a pair of tones.

Definition 2.19 Assume a GTS S and consider two tones t, u ∈ T . We say that the span of the
ordered pair (t, u) is (k − 1) if there are exactly k distinct tones between t and u. We denote the
span of (t, u) by span(t, u). Further, the ordered pair (t, u) is called a step if span(t, u) = 1.

2.6. SC and CC

Definition 2.20 (CC) Consider a demarcated GTS S with the set of commas K and the
extremity e. We say that:

(1) S is loose if for some κ ∈ K there are two tones m, n ∈ T such that the following conditions
hold simultaneously:

▹ (spec(e), spec(m), spec(e) + κ)

▹ (spec(e) + κ, spec(n), spec(e))

(2) S is tight if it is not loose.

In a loose GTS, there is a tone between two limits whose distance is a comma, from both sides
of the pitch circle. This is illustrated in Figure 7. Therefore, the comma is not sufficiently small.
The Pythagorean system is loose, for instance, for six tones and it is tight for five or seven tones.
In the case of two-dimensional GTSs, the diatonic system from Figure 1 and both chromatic ones
from Figure 5 are tight. An example of a loose two-dimensional demarcated GTS is easy to make
up; one such is shown in Figure 8: G is between F and 1B♭ and D is between 1B♭ and F .
The definition of the SC involves one complication; all the neighbouring GTSs must be consid-

ered. The reason is that, in general, the span is not invariant for neighbouring GTSs. Therefore, a
GTS is semi-WF if its span function is in a one-to-one correspondence with the interval function
and it isWF if, in addition, the span function is invariant for the neighbouring GTSs.

Definition 2.21 (SC) Consider a demarcated GTS S. We say that:

(1) S is semi-WF if for all tones t1, u1, t2, u2 ∈ T :

int(t1, u1) = int(t2, u2) =⇒ span(t1, u1) = span(t2, u2)

(2) S isWF if it is semi-WF and for any mappingN : K → {−1, 1} and all tones t, u ∈ T it holds
that span(t, u) = spanN(t, u), where spanN denotes the span function in the neighbouring
GTS SN .

Figure 7. Pitch representation of loose GTS.
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Journal of Mathematics and Music 11

Figure 8. A semi-WF and non-WF GTS.

Example 2.22 We give an example of a GTSwhich is semi-WF and non-WF. Figure 8 visualizes
two neighbouring GTSs. In the first one, the extremity is at F . This GTS is semi-WF. The span
of any fifth is 3 and the span of any third is 4. On the other hand, the neighbouring GTS where
the extremity is at 1B♭ is not semi-WF. The span of the fifth (C, G) is 2 and the span of the fifth
(G, D) is 4. Therefore, the span function is not invariant for neighbouring GTSs and the GTSs
are not WF.

3. The main theorem

We are ready to state the main result of the paper. It asserts that a two-dimensional demarcated
GTS with inner tone(s) is WF if and only if it is tight.

Theorem 3.1 (Generalized Carey–Clampitt’s Theorem) LetS beademarcated two-dimensional
GTS with at least one inner tone. Then S is tight if and only if it is well-formed.

Proof See Appendix 3. !

As mentioned before, this theorem can be considered a generalization of the famous results of
Carey and Clampitt [4]. They formulated a ‘closure condition’ (CC) and a ‘symmetry condition’
(SC) for the category of one-dimensional generated scales and concluded that these two conditions
are equivalent. They also introduced the term ‘WF scales’ referring to the scales meeting the two
equivalent conditions.
In the present approach,20 the category of two-dimensional GTS is considered. The CC is

generalized through the property of being ‘tight’ as defined in Definition 2.20. The situation
with the SC is more complex. Carey and Clampitt’s SC can be expressed in several different
versions which are equivalent for the one-dimensional case. In our generalization, we consider
the following version. The intervals of same generation orders have same scale step orders. (In
particular, every generating interval is of the same span.) The generation order of intervals is
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12 M. Žabka

Figure 9. A demarcated GTS without inner nodes contradicting the equivalence of the symmetry and CC.

generalized in the multi-dimensional case through the int function (Section 2.1 and Definition
2.7). The scale step order is generalized through the span function, which depends on the pitch
function (Definitions 2.19 and 2.7). This way Carey and Clampitt’s SC is generalized here by the
property of being ‘WF’ as defined in Definition 2.21.
There is another important point inwhich the theoremgeneralizesCarey andClampitt’swork. In

the one-dimensional case, the property ofwell-formedness is a criterion for identifying structurally
integral (or ‘symmetric’) scales, which – if symmetry and structural integrity are preferred – may
be considered a criterion for discriminating preferable scales. The scales generated by the perfect
fifth are WF if they comprise certain number of tones: 2, 3, 5, 7, 12, 17, 29, 41, 53, etc. Carey
and Clampitt used the theory of continued fractions, which enabled them to give exact formulas
for these numbers.21 Although the present theory does not generalize the concept of continued
fractions to two-dimensional systems,22 it still gives a valid criterion for selecting structurally
integral GTSs. It can be easily checked whether a pair of commas determines a tight GTS. If it
does the theorem asserts that the resulting GTS isWF. From this point of view, it is not any more
true that it is up to ‘the theorist to determine a priori which commas are theoretically useful’ [20,
Note 6, p. 63]. The theorem provides an objective way for selecting sets of commas determining
theoretically useful two-dimensional GTSs with symmetrical structure.

Example 3.2 Theorem 3.1 assumes existence of at least one inner tone.23 In this example, we
show that this assumption cannot be omitted. Consider the demarcated GTS shown in Figure 9
with limits B♭, C, 1F ♯, and 1E. It can be directly verified that this GTS is not tight. On the other
hand, a generating fifth in any neighbouring GTS has always span 1 and so does any generating
third, as well. Therefore, this GTS is WF and contradicts the implicationWF → Closure.24

4. Examples

The concepts of g-Tonnetz andGTS apply to surprisinglymany phenomena encountered in various
musical contexts. They are suitable to model situations where two (or more) basic elements are
freely combined to built complex, symmetrical structures. As a basic example, the diatonic and
chromatic scales in just intonation are WF GTSs with two generators: the perfect fifth and the
pure major third (Figures 1 and 5). In a similar way, the anhemitonic pentatonic scale can be
modelled as a WF two-dimensional GTS, as well.
However, the generating intervals need not necessarily be the fifth and the third. For example,

to model the pitch helix, a model of tonal space known from the psychology of hearing, we need to
consider for the generators the octave o and the semitone σ , and one comma 12σ − o. The infinite
g-Tonnetz gT(o, σ |12σ − o) models the pitch helix. (The pitch function in a corresponding GTS
would assign values from R rather then R/Z.)
Other WF GTSs of musical interest can be conceived within the usual chromatic universe

of 12 tones. For instance, the octatonic and the hexatonic scales can be interpreted as GTSs
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with two generators: a step σ and a third θ . In both systems, we have the comma κ = 2σ − θ

reflecting the idea that two steps give a third. The other commas are λ1 = 3θ and λ2 = 4θ in
the hexatonic and the octatonic scale, respectively. This is in accordance with the periodicity of
the third in either system. If pitch(σ ) = 1/12 and pitch(θ) = 4/12, we obtain a GTS with the
g-Tonnetz gT(σ, θ |κ, λ1), which is WF and models the hexatonic system. On the other hand,
pitch(σ ) = 1/12 and pitch(θ) = 3/12 leads to another GTS with the g-Tonnetz gT(σ, θ |κ, λ2),
which is also WF and models the octatonic system (see the first two figures in Appendix 4).
As still another GTS within the chromatic space, consider the g-Tonnetz generated by semitone

σ and tritone τ with commas 2τ and 6σ + τ . The resulting GTS contains all 12 tones and is
WF. The underlying g-Tonnetz can be drawn on a Möbius strip (see the last figure in Appendix
4). It may have analytical application for those pieces of the twentieth-century repertoire which
make use of the ‘most-dissonant’ intervals instead of the most consonant ones. In terms of the
dissonance, this g-Tonnetz is a kind of conceptual opposite of the standard Tonnetz. At the same
time, it is an interesting coincidence that it shares certain structural singularity with the diatonic
system (Figure 2), which also can be drawn on a Möbius strip.
Finally, we want to focus on the systems where the generating elements are the perfect fifth

and a small interval of the size approximately a half of semitone. These generators are important
for various music cultures, notably for Arabic and Indian music. In the Indian music theory, the
small interval is usually called śruti and we will use this name. So we consider a g-Tonnetz with
two generators φ (the fifth) and σ (the śruti). The basic problem is to specify the commas.
One comma is easy to think of. When we move from a given point by φ in opposite directions,

we arrive to points a whole tone apart (considering the octave equivalence, of course). Now, if we
bend the lower tone upwards by two śrutis and the upper one by the same amount downwards, we
obtain almost the same tone.25 This is the basis of the first comma: −φ + 2σ ≡ φ − 2σ , which
gives the comma κ = 4σ − 2φ.
The other comma is related to the one underlying the Pythagorean pentatonic. A tone tuned as

the fifth perfect fifth is lower than the starting tone just by a small interval. By bending the fifth fifth
upwards results in a comma. However, there is an issue: should it be bent by two or by one śruti?
In the first case, the other comma is λ1 = 5φ + 2σ . In the second case, it is λ2 = 5φ + 1σ . It is
fascinating that both options seem to have been (unconsciously) applied by major music cultures
– the Arabic and the Indian. Figure 10 shows the GTSs given by the g-Tonnetze gT(φ, σ |κ, λ1)

and gT(φ, σ |κ, λ2). Both GTSs are WF.
The first solution leads to a 24-tone WF GTS. Arabic music theory knows a system of 24

small intervals called nı̄ms. It is usually explained as a result of splitting each tone of the 12-tone
chromatic system into two quarter tones. Our approach provides an alternative explanation for the
structure of the system. In this explanation, the nı̄ms do not have to be (acoustically) uniform.26
More striking is the fact that the WF GTS implied by the second set of commas comprises 22

elements. It seems to model suitably the Indian system of 22 śrutis. There is no generally accepted
explanation for the number of 22 in this system.27 Our explanation of this number is very simple
and surprisingly accurate. It only relies on four basic assumptions:

(1) the perfect fifth and the śruti are basal;
(2) a fifth down and two śrutis up equals approximately a fifth up and two śrutis down;
(3) five-fifths up equals approximately one śruti below;
(4) the resulting system is symmetrical (WF).

Notice that we did not have to specify the exact value of a śruti. It is sufficient that it is
approximately a half of semitone. Then both resulting GTSs are tight andWF. The present theory
aims at investigating structural properties of tone systems rather than addressing tuning issues
and details of acoustical realizations of them.
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14 M. Žabka

Figure 10. The GTSs generated by the perfect fifth and the śruti.
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5. Open problems

Problem 5.1 (Carey and Clampitt’s theorem for higher dimensions) The formal framework
developed in Section 2 is not confined to two dimensions. It is therefore natural to ask whether a
generalization of Carey and Clampitt’s theorem for higher dimensions holds or not. I conjecture
that it does.

Problem 5.2 (Generalization of Myhill’s property) In their theory of diatonicism [22], Clough
andMyerson introduced the concept of ‘generic’and ‘specific’intervals and showed that Myhill’s
property (MP), among other equivalent conditions, is a key structural feature of the diatonic
scales. MP states that every generic interval appears in exactly two sizes. Carey and Clampitt
[23] proved that, in non-degenerate one-dimensional generated scales, MP is equivalent to WF.
It means that any one-dimensional generated scale is WF if and only if it has up to two different
sizes for any (generic) interval.
In our approach, ‘generic intervals’ correspond to ‘intervals’ int(a, b) (i.e. all elements of the

groupZ[X]/⟨K⟩), ‘specific intervals’correspond to values spec(b) − spec(a) (i.e. some elements
of Z[X]), and ‘sizes’of intervals are given by values size(a, b) (i.e. elements of R/Z). Therefore,
if pitch values of generators are not immensurable, different specific intervals may have same
sizes. However, this does not happen for tight demarcated GTSs. But still, there does not seem to
be a straightforward generalization of MP for the two-dimensional case. As can be easily shown a
necessary condition similar to MP exists: in a demarcatedWF two-dimensional GTS any generic
interval appears in up to four different sizes. This condition is not sufficient, though. The problem
is to find a necessary and sufficient condition to WF, which could be considered a generalization
of MP for two-dimensional GTSs.

Problem 5.3 (Hellegouarch’s condition) Hellegouarch [14,15] proposed a theory of ‘natural
scales’which is in certain aspects closely related to the present theory. Among other matters, he
investigated the free abelian group of rank 3 (i.e. generated by three generators: the octave, the
perfect fifth and the major third) and its quotient groups modulo its subgroups generated by two
commas. He found a sufficient condition for such quotient groups to be cyclic. This result became
a basis for his exploration of ‘improvements’ of the Pythagorean scales.
Let us briefly rephrase Hellegouarch’s approach within our framework. As he does not consider

the octave equivalence and the octave is one of the generators, his quotient groups of rank 3
correspond to the two-dimensional GTSs. Consider a GTS with a set of generators X consisting
of the perfect fifth φ and the major third θ , i.e. X = {φ, θ}, and a set of commas K = {κ1, κ2}.
Take bi, ci ∈ Z, i = 1, 2 such that κi = biφ + ciθi and ai ∈ Z as the appropriate coefficients for
octaves, i.e. ai minimizes the number |ai + bipitch(φi ) + cipitch(θi )|. Hellegouarch’s condition
(HC) can be put in the following way.

∃ x, y, z ∈ Z :

∥∥∥∥∥∥

x a1 a2
y b1 b2
z c1 c2

∣∣∣∣∣∣
= 1. (HC)

As per Hellegouarch’s theorem, HC implies that Z[X]/⟨K⟩ is cyclic.
It can be easily verified that HC !WF. It suffices to consider the first Hellegouarch’s example

in the third table on page 16 of [15]: κ1 = −3φ, κ2 = θ . The corresponding GTS fulfils HC but is
loose (i.e. not WF).
On the other hand, I hypothesize28 thatWF⇒HCfor two-dimensional29GTSs. If this hypothesis

is valid, then it has two interesting implications. First, allWF two-dimensional GTSs have a cyclic
group of intervalsZ[X]/⟨K⟩. Second, well-formedness is amore restrictive condition for selecting
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16 M. Žabka

theoretically interesting generated scales than HC. At the same time, it can be argued that the
CC (equivalent to WF) is a basic cognitive requirement. Therefore,WF would seem to be a more
accurate criterion for exploring two-dimensional generated scales.

Problem 5.4 (Fokker’s periodicity blocks) Fokker’s ‘periodicity blocks’ [12,13] are selections
from the free abelian group (harmonic lattice) related to what is called here specifying function.
Fokker’s selections are also given by a parallelogram (or a parallelepiped) delimited by a set of
commas. In this sense, periodicity blocks correspond to GTSs. However, not all periodicity blocks
are ‘demarcated’ as defined in the present paper. Loosely speaking, Fokker does not require the
vertices of the delimiting parallelogram to belong to the free abelian group. Therefore, the concept
of periodicity block is more general than the concept of comma-demarcated GTS. The Hungarian
scale given above as an example of non-demarcated GTS (Example 2.10) can be modelled as a
periodicity block.
These considerations lead to a basic question: does the equivalence of the SC and the CC

hold also in the more general case of Fokker’s periodicity blocks? To be correct, before putting
this question, one should generalize the definitions of SC and CC, which required the GTS to be
demarcated. So, the problem is to generalize SC and CC for periodicity blocks and to investigate
for which periodicity blocks these conditions are equivalent.
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Notes

1. For a related, independently formulated concept of ‘the moments of symmetry,’ see also [3].
2. ‘Small’ does not necessarily mean the smallest in the system. For example, the size of the comma (B♭, B) is larger

than the size of the inner interval (E, F ) in the Pythagorean diatonic system.
3. It may be formalized as a finite Lewinian GIS. For a definition of GIS, see [4] or Appendix 1 of the present paper.
4. Informally, the term ‘span’ can be defined as the number of steps between two notes in a scale ordered by pitch.

For example, the span of (C, E) is 2 in the C major scale. A formal definition will follow.
5. In the one-dimensional case, there are several equivalent ways to put the SC. Here, we select one which is easy to

generalize for the multidimensional context.
6. It was first published without proof in [2]. A proof can be found in Carey’s dissertation [5].
7. The term ‘Tonnetz’ is commonly used today. For an overview of the historical development of this concept, refer

to [6]. The work of Richard Cohn [7, 8] played a key role in its revival in the modern music theory. In the present
paper, we propose one possible mathematical formalization of the concept.

8. The next section contains the formal definition.
9. Figure 1 and the similar ones visualize two-dimensional GTS’s (refer also to Definition 2.7) on a usual Tonnetz,

which corresponds to the free abelian group Z[φ, θ] generated by the perfect fifth φ and the pure major third θ . The
double-dotted lines represent its subgroup generated by the set of commas K . The circled positions visualize the
selection of representatives of the quotient group Z[φ, θ]/⟨K⟩, i.e. the specifying function. The tone letters express
the values of the elements of Z[X] under the pitch function. (The number-prefixes track the syntonic commas: e.g.
1E means that the tone mapped to this position is tuned by one syntonic comma lower than the tone mapped to
the position denoted by E. The syntonic comma can be expressed as 4φ − θ and it belongs to the subgroup ⟨K⟩
generated by the set of commas in this example.) The corresponding generic Tonnetz can be drawn on a torus: take
the parallelogram delimited by the commas (the double-dotted lines) containing the selected positions and glue its
opposite edges together and the circles and nodes make up the generic Tonnetz. Its nodes are the tones of the GTS
and the values of the interval function is implied by the arrows. In certain singular cases, the generic Tonnetz may
be drawn on simpler ‘canvas’ such as Möbius strip or circle. The one corresponding to the GTS visualized by this
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figure may be drawn on the Möbius strip. See also Appendix 2, which elaborates the mathematical details of this
example.

10. Although g-Tonnetz is a graph, the term ‘dimension of g-Tonnetz’ as defined here differs from the concept of
‘dimension of a graph’ as used elsewhere [9].

11. Mazzola’s ‘harmonic strip’ is the geometric nerve of a set of seven three-element sets corresponding to the triads of a
diatonic scale. The 0-simplices (nodes) represent the triads, the 1-simplices (edges) represent the pairs of triads with
common tone(s), and the 2-simplices (triangles) represent the triples of triads with a common tone. The harmonic
strip can be visualized on a Möbius strip.

12. We give the lemmas in this section without proofs. The reason is that they state known facts and/or their proofs
are straightforward. In particular, the first two lemmas imply that the categories of groups and GISs are equivalent
in the commutative case. Kolman [11] gave a detailed account showing that this equivalence holds in general (i.e.
even without the assumption of commutativity).

13. The formal framework presented in this section is not confined to two dimensions. Strictly speaking, P(K)
is contained in a parallelogram only in the two-dimensional case. In the three-dimensional case, it is a
parallelepiped, etc.

14. The concept of the demarcated GTS closely corresponds with that of ‘periodicity block’ of Fokker [12,13]. Fokker
introduced this concept and heuristically explored certain particular periodicity blocks, which, in our terms, are
GTSs generated by pure intervals. He did not state an objective criterion explaining his selection of the examined
periodicity blocks. In the present paper, the main point is to show that the SC and the CC are equivalent for
demarcated GTSs with inner tone(s). This may become a basis for defining such an objective criterion. In this sense,
the present theory extends Fokker’s work on periodicity blocks from the 1960’s. See also the last problem discussed
in Section 5.

15. The tone names in the subsequent figures stand for elements of the free group Z[X] (and their values under the
pitch function). They should not be confused with the elements of T . See also Note 4 for more details about the
graphing technique and Appendix 2 for a detailed explanation of an example.

16. However, the Hungarian scale is a ‘periodicity block’ as introduced by Fokker [12,13]. See also the open problem
appertaining to the relation between GTSs and periodicity blocks drafted in Section 5.

17. In fact, the rules of strict counterpoint allowed to introduce the tritone (B, F ) if the tone D was in bass. That way,
(D, B) and (D, F ) were considered acceptable intervals. In other words, the ‘central’ tone D could mitigate the
extremities F and B.

18. Riemann’s notation ofminor triadswould perfectly fit into this context. In his theories, theAminor triad is considered
the minor triad of the tone E. So, the ‘central’ tones C and E correspond with the Riemannian C major and ‘E
minor’.

19. Taking the other two limits as the extremities leads to uncommon tone systems. These systems are structurally more
complex in that they comprise four different step intervals (for a definition of a step interval, see below) while the
common systems of just intonation mentioned in the text have step intervals only of three different kinds. However,
a formal treatment of these considerations is out of scope of this paper.

20. A comparable approach to generalizing Carey and Clampitt’s results can be considered the work of Hellegouarch
[14,15].

21. For a recent work discussing the applications of continued fractions, see [16]. The apparatus of the continued
fractions has been used in the theory of tuning for centuries. Although Douthett and Krantz assert that Drobisch
[17] ‘was the first to approximate musical intervals using continued fractions’, (p. 48) it was probably Euler who
first applied this approach to the study of tone systems in his famous Tentamen novae theoriae musicae [18, p. 260],
published in 1739.

22. There have been various attempts to generalize the continued fractions to higher dimensions. One of the first ones
was Barbour’s [19] work.

23. In the previous version of this paper [1], an even stricter assumption was considered: the ‘normalness’ of the GTS.
It is easy to see that a normal GTS, as defined there, always contains at least one inner tone. Therefore, the version
of the theorem given in the present paper is more general.

24. On the other hand, the implication Closure→WF holds for demarcated two-dimensional GTSs in general, without
the assumption of existence of an inner node. This follows directly from the proof of the theorem presented in
Appendix 3.

25. This condition fits with the condition that a śruti is approximately a half of semitone in the following way. Assume
that two śrutis are equal to a (chromatic) semitone. Then if we start fromC, a fifth down and two śrutis up is F ♯ and
a fifth up and two śrutis down is G♭. So the condition corresponds with the statement that a śruti is approximately
a half of semitone as far as F ♯ approximately equals G♭.

26. The uniformity of nı̄ms was the core of the strong arguments at the famous Congress of Cairo in 1932 about the
acceptability of 24-tone equal temperament.

27. As an example from the recent mathematical music theory, Clough et al. [21] investigated this system. However,
they did not address the question of the total number of śrutis. Possible explanations of the śruti-system as a two-
dimensional GTS generated by perfect fifth and major third or as a three-dimensional GTS generated by perfect
fifth, major third and natural seventh can be found in [12,13].

28. The idea of a proof (to be verified). Consider the free abelian group Z[o, φ, θ] and its elements κ ′
1 = a1o + b1φ +

c1θ , κ ′
2 = a2o + b2φ + c2θ , and σ = xo + yφ + zθ . The equation with the determinant can be geometrically

interpreted that there is no element of Z[o, φ, θ] contained in the parallelepiped delimited by κ ′
1, κ

′
2, and σ , except
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18 M. Žabka

for the vertices. Assume that HC does not hold and take for σ any of the steps. Then we will obtain an element in
the parallelepiped. This element will counterdict the CC.

29. This may even be true for one-dimensional GTSs. Hellegouarch restricts his investigation of one-dimensional
GTSs to those which correspond to the convergents of log2(3/2). Therefore, the GTSs corresponding to the semi-
convergents (which according to the results of Carey and Clampitt are also WF) do not appear on Hellegouarch’s
list. However, it does not mean that they do not fulfil a one-dimensional version of HC. As an example, consider
the Pythagorean diatonic scale. It is WF and is not listed by Hellegouarch. And it also satisfies HC because for
(x, y) = (−1, 2) we have: ∥∥∥∥

x −4
y 7

∥∥∥∥ = 1.
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Appendix 1. Basic mathematical conventions

The letters R and Z denote the set of real numbers and the set of integers, respectively. Zn denotes the additive cyclic
group of n elements {0, 1, . . . , n − 1}.We assume octave equivalence and we use the arithmetics modulo 1 for the domain
of pitch. Addition modulo 1 is distinguished from regular addition by using the symbol ‘⊕’.
A Cartesian product of sets S1, . . . , Sn is a set P = S1 × · · · × Sn of ordered n-tuples (s1, . . . , sn) such that si ∈ Si

for i = 1, . . . , n. If all the sets Si are same, i.e. Si = S for i = 1, . . . , n, we write P = Sn. An n-ary relation on a set S
is a subset of the Cartesian product Sn, i.e. a set of ordered n-tuples of elements of S. Therefore, a ternary relation on
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S is a set of ordered triples of elements of S. An equivalence relation on a set S is a binary relation which is reflexive,
symmetric, and transitive. An equivalence relation implies a partitioning of the set S into equivalence classes.
The mappings, which are binary relations, are notated in a usual way: m: A → B denotes a mapping m with domain

A and codomain B, m: a +→ b or m(a) = b means that m maps the element a ∈ A to its image b ∈ B, and m[A] denotes
the image of the domain as a subset of the codomain. The pre-image of an element b0 ∈ m[A] is the element a0 such
that m(a0) = b0. In this case, we write m−1(b0) = a0. Analogically, for any subset X ⊂ m[A], we denote m−1[X] the
pre-image of X under m, i.e. m−1[X] is the set of all elements a ∈ A such that their image m(a) is in X. A restriction of
the mapping m to a subset A′ ⊂ A of the domain is the mapping m′: A′ → B defined by m′(a′) = m(a′) for all a′ ∈ A′.
This restriction is notated as m′ = m|A. The mapping m is in this case also called an extension of m′.
The concepts of group, group homomorphism, group isomorphism, normal group, and group equivalence relation are

used in a usual way.We alsomake an extensive use of the concept of free abelian groups.A free (abelian) groupF(X) freely
generated by the set of generatorsX is a (abelian) group such that for any (abelian) groupG and any mappingm: X → G,
there exists a group homorphismm∗: F(X) → G which is an extension ofm. It can be shown that for any non-empty set
X, there exists a free (abelian) group F(X) and it is unique, up to isomorphism. It is a well-known fact that any (abelian)
group I generated by a subset X can be presented as a quotient group of the free (abelian) group F(X). Assume a subset
K ⊆ F(X) of the free (abelian) group F(X) and let ⟨K⟩ be the smallest normal subgroup of F(X) containing all elements
of K . We denote F(X)/⟨K⟩ the quotient group of F(X) modulo ⟨K⟩. If the group I is isomorphic to F(X)/⟨K⟩ we
say that F(X)/⟨K⟩ is a presentation of the group I . We denote [α]K the equivalence class of an element α ∈ F(X) in
F(X)/⟨K⟩. If there is no risk of confusion, we omit the subscript ‘K’. All these ideas also apply in the commutative case
as shown by the parenthetical adjective ‘abelian’ used throughout this paragraph. Any abelian group I may be uniquely
represented as a quotient group of the free abelian group Z[X] where Z[X] = {∑n

i=1 kiξi |ki ∈ Z, ξi ∈ X}. We follow a
convention that the elements of Z[X] are notated by greek alphabet through the entire article.
The proposed theory relies on David Lewin’s concept of the generalized interval systems (GIS) [4]. A GIS is a triple

(S, I, int), where S is a set, I is a group of intervals and int is a mapping assigning an interval to every ordered pair of
elements of S with the following properties:

(1) int(t, u) int(u, v) = int(t, v) for all t, u, v ∈ S.
(2) For any t ∈ S and α ∈ I there is a unique u ∈ S such that int(t, u) = α.

We will limit our investigation to commutative GISs, i.e. those for which the group of intervals is abelian. The notion
of isomorphism can be defined for the category of GISs in a common way.
A basic concept of this paper – the generic Tonnetz – is defined as a directed graph. (In fact, the generic Tonnetz is a

concept analogous to the concept of the ‘Cayley graph’ known from the geometrical theory of groups. From this point
of view, the theory of the generic Tonnetze belongs to that branch of group theory.) We say that an ordered quadruple
(N, A, LA, lA) is an arrow-labelled directed graph if the following conditions hold.

(1) N is a non-empty set of nodes;
(2) A is a set of ordered pairs of nodes (i.e. a subset of the direct product N × N ) and its elements are called arrows;
(3) LA is a non-empty set of arrow labels;
(4) lA: A → LA is a mapping assigning arrow labels to arrows and is called an arrow labelling. If l(a) = α we say that

a is an α-arrow.

The concept of graph isomorphism (isography) can be defined in a usual way.

Appendix 2. A detailed example

In this appendix, we elaborate mathematical details for the first example of a two-dimensional GTS from the main text.
It models the diatonic scale in just intonation and is visualized on Figure 1. Figure A1 reproduces this visualization.

A.1. GTS: basic notions

The GTS comprises seven tones and is generated by the perfect fifth φ and the major third θ . The following list specifies
the concepts from Definition 2.7.

Tones: T = {c, d, e, f, g, a, b}.
Generators: X = {φ, θ}.
Commas: K = {κ1 = −φ + 2θ, κ2 = −3φ − θ}.
Group of intervals: I = Z[φ, θ]/⟨κ1, κ2⟩

This group is isomorphic to the cyclic group Z7.
Specifying function: We arbitrarily select the value of d as 0. The value of all the other tones is implied by this selection.

spec: c +−→ −2φ
d +−→ 0

e +−→ −2φ + θ
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20 M. Žabka

Figure A1. GTS S modelling the diatonic scale in just intonation.

f +−→ −3φ
g +−→ −φ

a +−→ −3φ + θ

b +−→ −φ + θ .

Interval function: int: (t1, t2) +→ [spec(t2)] − [spec(t1)].
Pitch function: pitch: φ +→ log2( 32 ) = 0.585 . . . , θ +→ log2( 54 ) = 0.322 . . .
GTS: S = (T , X, K, int, spec, pitch) is a GTS

A.2. Generic Tonnetz

Every GTS determines a generic Tonnetz. Example 2.2 describes a g-Tonnetz related to our GTS S and Figure 2 shows
the graph. The group of intervals can be specified more precisely as Z[X]/⟨K⟩. The following list refers to Definition 2.1
and gives the details of the concepts defined there. (We consider the canonic projection e:Z[X] → Z[X]/⟨K⟩, ξ +→ [ξ ].)
GIS: (T ,Z[X]/⟨K⟩, int).
Set of generators: e[X] = {[φ], [θ ]}.
Nodes: T = {c, d, e, f, g, a, b}.
Arrows: A = int−1[e[X]] = int−1([φ]) ∪ int−1([θ ]).
Arrow labels: [φ] and [θ ].
[φ]-arrows: int−1([φ]) = {(c, g), (d, a), (e, b), (f, c), (g, d), (a, e), (b, f )}.
[θ ]-arrows: int−1([θ ]) = {(c, e), (d, f ), (e, g), (f, a), (g, b), (a, c), (b, d)}.

A.3. Demarcatedness

The set P(K) from the definition of demarcatedness contains seven elements. It can be directly verified that the following
equations hold:

spec(c) = spec(d) + 2
7
κ1 + 4

7
κ2,

spec(d) = spec(d) + 0
7
κ1 + 0

7
κ2,
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spec(e) = spec(d) + 5
7
κ1 + 3

7
κ2,

spec(f ) = spec(d) + 3
7
κ1 + 6

7
κ2,

spec(g) = spec(d) + 1
7
κ1 + 2

7
κ2,

spec(a) = spec(d) + 6
7
κ1 + 5

7
κ2,

spec(b) = spec(d) + 4
7
κ1 + 1

7
κ2.

Therefore, we have that spec[T ] = spec(d) + P(K) and the investigated GTS is demarcated. The following list
contains details of the concepts from Definition 2.9.

Extremity: Tone d.
Edge tones: The only edge tone is the extremity d, which is both a κ1-edge tone and a κ2-edge tone.
Inner tones: All the tones except for the extremity are inner.
Limits: The following four elements of Z[φ, θ] are the limits:

λ1 = spec(d) = 0

λ2 = spec(d) + κ1 = −φ + 2θ

λ3 = spec(d) + κ2 = −3φ − θ

λ4 = spec(d) + κ1 + κ2 = −4φ + θ .

A.4. Neighbouring GTS

Consider the following four mappings:

N++: K −→ {−1, 1}, κ1 +−→ 1, κ2 +−→ 1,

N−+: K −→ {−1, 1}, κ1 +−→ −1, κ2 +−→ 1,

N+−: K −→ {−1, 1}, κ1 +−→ 1, κ2 +−→ −1,
N−−: K −→ {−1, 1}, κ1 +−→ −1, κ2 +−→ −1.

They determine four neighbouring GTSs, the first one being the GTS S. Figure A2 visualizes the neighbouring GTS S−−
determined by N−−. The following list gives the details of the GTS.

Set of commas: In this neighbouring GTS, both commas are reversed.

K−− = {−κ1 = φ − 2θ, −κ2 = 3φ + θ}

Specifying function:K(t) is empty for every tone t ̸= d andK(d) = K . Therefore, the specifying function spec−− takes
a different value only for d.

spec−−: c +−→ −2φ
d +−→ κ1 + κ2 = −4φ + θ

e +−→ −2φ + θ

f +−→ −3φ
g +−→ −φ

a +−→ −3φ + θ

b +−→ −φ + θ

Neighbouring GTS: S−− = (T , X, K−−, int, spec−−, pitch).
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22 M. Žabka

Figure A2. The neighbouring GTS S−−.

Demarcatedness: The demarcatedness of S implies the demarcatedness of S−−. The following equations show the
calculations:

spec−−(c) = spec−−(d) + 5
7
(−κ1) + 3

7
(−κ2)

spec−−(d) = spec−−(d) + 0
7
(−κ1) + 0

7
(−κ2)

spec−−(e) = spec−−(d) + 2
7
(−κ1) + 4

7
(−κ2)

spec−−(f ) = spec−−(d) + 4
7
(−κ1) + 1

7
(−κ2)

spec−−(g) = spec−−(d) + 6
7
(−κ1) + 5

7
(−κ2)

spec−−(a) = spec−−(d) + 1
7
(−κ1) + 2

7
(−κ2)

spec−−(b) = spec−−(d) + 3
7
(−κ1) + 6

7
(−κ2).

A.5. Pitch-related properties

Pitch: The pitch value of any linear combination of generators (i.e. any element of Z[X]) can be directly calculated as the
linear combination of the pitch values of the generators specified above. This way, we can calculate the following
values. (Figure A3 depicts these values on the pitch circle.)

pitch: spec(c) +−→ 0.830 . . .

spec(d) +−→ 0

spec(e) +−→ 0.152 . . .

spec(f ) +−→ 0.245 . . .

spec(g) +−→ 0.415 . . .
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Figure A3. Tones and limits in the pitch domain.

spec(a) +−→ 0.567 . . .

spec(b) +−→ 0.737 . . .

λ2 +−→ 0.059 . . .

λ3 +−→ 0.923 . . .

λ4 +−→ 0.982 . . .

Between: Loosely speaking, α2 is between α1 and α3 if it follows α1 and is followed by α3 on the pitch circle (clockwise).
For example, λ4 is between λ3 and λ2 but is not between λ2 and λ3.

Closure condition: Figure A3 clearly visualizes that the extremity is the only tone whose spec value is positioned within
the cluster of the limits. Therefore, the GTS S is tight. (And so are all its neighbouring GTSs.)

Span: The span of any pair of tones can be easily counted on the pitch circle (clockwise); e.g. span(c, e) = 2, span(d, g) =
3, span(e, c) = 5, etc.

Symmetry condition: It can be directly verified that the first condition from Definition 2.21 holds. Therefore, the GTS S
is semi-WF. And due to the fact that the limits are positioned in a cluster the span is invariant in the neighbouring
GTSs. It means that if we denote spanN the span function in any neighbouringGT S then span(t, u) = spanN(t, u)
for any pair of tones t, u ∈ T . Therefore, the GTS is also WF.

Appendix 3. Proof of the main theorem

For the entire section, we consider a two-dimensional demarcated GTS S = (T , X, K, int, spec, pitch) with a set of
generators X = {ξ1, ξ2}, a set of commas K = {κ1, κ2}, and extremity e. Before embarking on the main proof of the
theorem, we first formulate a series of lemmas.

LemmaA.1 Let S be tight. Consider a demarcated GTS S′ = (T ′, X, K, int′, spec′, pitch) having the same set of
generators, the same set of commas and the same pitch function as S and assume that spec(a) = spec′(a′) and
spec(b) = spec′(b′) for a, b ∈ T and a′, b′ ∈ T ′. Then (a, b) is a step in S if and only if (a′, b′) is a step in S′.

Proof Due to the symmetry of the statement, it is sufficient to prove one implication. We proceed by contradiction.
Therefore, we assume that (a, b) is a step in S and (a′, b′) is not a step in S′. It means that there is a tone c′ ∈ T ′ between
a′ and b′. Denote α = spec(a) = spec′(a′), β = spec(b) = spec′(b′) and γ ′ = spec(c′).
As κ1 and κ2 are linearly independent in Z[X], for any element µ ∈ Z[X], we may consider the real numbers r1(µ)

and r2(µ) for which:

µ = spec(e) + r1(µ)κ1 + r2(µ)κ2.

Let e′ be the extremity of S′ and let ϵ′ = spec′(e′). As the intersection of spec[T ] and spec′[T ′] is non-empty, we have
that −1 < r1(ϵ

′), r2(ϵ′) < 1. We will assume that both r1(ϵ
′) and r2(ϵ

′) are non-positive, i.e.

−1 < ri(ϵ
′) ≤ 0, for i = 1, 2. (A1)

All the other three combinations of signs can be handled analogically.
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24 M. Žabka

Figure A4. Four possible cases for the position of γ ′.

Figure A5. Contradiction in Case 2.

Now, take the real numbers r1(γ ′) and r2(γ
′). The demarcatedness of S′ implies ri (ϵ′) ≤ ri (γ

′) < ri(ϵ
′) + 1. Combin-

ing these inequalities with (A1) yields−1 < ri(γ
′) < 1 for i = 1, 2. Therefore, only the following four cases are possible

(see also Figure A4).
Case 1: 0 ≤ r1(γ

′) < 1 and 0 ≤ r2(γ
′) < 1. In this case, the demarcatedness of S yields existence of a tone c ∈ T such

that spec(c) = γ ′. Then, however, c is between a and b, which contradicts the fact that (a, b) is a step in S. Therefore,
this case is not possible.

Case 2: −1 < r1(γ
′) < 0 and −1 < r2(γ

′) < 0. In this case, γ = γ ′ + κ + λ belongs to spec[T ]. Therefore, there is
a tone c ∈ T such that spec(c) = γ . We consider also the transposition Sζ of S, where ζ = γ − spec(e) (Figure A5).
As (a, b) is a step in S, we have▹ (α, β, γ ). On the other hand, γ ′ is between α and β (FigureA6). These two relations

imply that β is between γ ′ and γ and α is between γ and γ ′. And therefore, we have:

▹ (γ , α, γ ′) (A2)

▹ (γ ′, β, γ ). (A3)

In this case, relations (A2) and (A3) yield a contradiction with the CC for Sζ , which leads to a contradiction with the CC
for its transposition, the GTS S.

Case 3: −1 < r1(γ ) < 0 and 0 ≤ r2(γ ) < 1. In this case, γ = γ ′ + κ1 belongs to spec[T ] and we have a tone c ∈ T
such that γ = spec(c).
Assume that both α and β are positioned ‘above’ the line connecting γ ′ and γ (i.e. r2(α) ≥ r2(γ ) and r2(β) ≥ r2(γ )).

Then we consider the transposition Sζ of S similarly as in Case 2 and arrive at a contradiction with the CC.We would get
a similar contradiction if both α and β were positioned ‘below’ the line (i.e. if r2(α) < r2(γ ) and r2(β) < r2(γ )).
Therefore, one of α and β must be situated ‘above’ and the other ‘below’ the line. Without loss of generality, assume

that α is ‘above’, r2(α) ≥ r2(γ ), and β ‘below’, r2(β) < r2(γ ). This situation is shown in Figure A7.
Take the element

δ = γ ′ + (γ − β).
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Figure A6. Contradiction in Case 2: the pitch domain.

Figure A7. A ‘dual’ element δ to β ‘above’ the comma γ − γ ′.

Now both δ and α are ‘above’ the line connecting γ ′ and κ:

r2(δ) = r2(γ
′) + (r2(γ ) − r2(β)) > r2(γ

′) = r2(γ ).

Similarly as in Case 2, it can be proved that relations (A2) and (A3) hold also in this case. Thus, α is between γ and
γ ′ and β is between γ ′ and γ . We will show that δ is between γ ′ and γ , as well. As per definition, ▹ (γ ′, β, γ ) implies:

size(γ ′, γ ) = size(γ ′, β) + size(β, γ ). (A4)

From the definition of δ, it follows that:

size(γ ′, β) = size(δ, γ ) (A5)

size(β, γ ) = size(γ ′, δ) (A6)

By combining (A4)–(A6), we obtain the following equation.

size(γ ′, γ ) = size(γ ′, δ) + size(δ, γ ).

Thus, δ is between γ ′ and γ . Therefore, applying also the fact that α is between γ and γ ′ and the fact that both α and δ
are ‘above’ the line connecting γ ′ and γ , we can arrive at a contradiction with the CC for Sζ and also S in a similar way
as we did above for Case 2.

Case 4: 0 ≤ r1(γ ) < 1 and −1 < r2(γ ) < 0. In this case, one may proceed analogically as in the previous one. This
finishes the proof of lemma. "

LemmaA.2 Let S be tight. Then any step in S is a step in all neighbouring GTSs.

Proof First, consider that the neighbouring GTS switches just one comma, i.e. we have a mapping N : K → {−1, 1}
such that N(κ) = 1 and N(λ) = −1 for {κ, λ} = K . Assume that (a, b) is not a step in SN , i.e. there is a tone c ∈ T
between a and b in SN . We will show that this leads to a contradiction.
Denote α = spec(a), β = spec(b), and γ = spec(c). As N changes only the sign of the comma κ , the generation

function of a tone t is different in SN if and only if t is a λ-edge tone. In that case, specN(t) = spec(t) + κ . There are
eight theoretical combinations for a, b, and c to be or not to be λ-edge tones. If all them were or were not λ-edge tones
simultaneously, then c would be between a and b in SN , as well. This would yield a contradiction. Therefore, only the
following six cases remain.
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Figure A8. A possible position of δ′.

Figure A9. Another possibility for the position of δ′.

In three of these cases, exactly one of the tones is a λ-edge tone. Assume that it is generated in S by ψ . Then we may
choose {φ, χ , ψ} = {α, β, γ } in such a way that ▹ (φ, χ , ψ) and ▹ (φ, ψ + κ, χ). This implies ▹ (ψ, φ, ψ + κ) and
▹ (ψ + κ, χ , ψ). Following the same ideas as in the proof of LemmaA.1, we may distinguish whether both φ and χ are
‘on the same side’ of the line connecting ψ and (ψ + κ). If yes, we directly construct a transposition of S where the CC
is not met. If not, we first take the ‘dual’ element ω = 2ψ + κ − χ and then construct the transposition of S contradicting
the CC.
For the last three cases, exactly two of the tones are λ-edge tones.We proceed in the same way with the only difference

that {φ − κ, χ − κ, ψ} = {α, β, γ }, where ψ is the value of the generation function of the non-λ-edge tone.
We proved that the lemma holds for neighbours which switch just one comma. The last possibility to consider is that

both commas are changed in the neighbour, i.e.N(κ1) = −1 andN(κ2) = −1. In that case, we apply twice the statement
we have just verified: If (a, b) is a step in S then it is a step in SM forM: κ1 +→ −1, κ2 +→ 1. This, in turn, implies that
(a, b) is also a step in SN . "

LemmaA.3 Let S be tight. Consider tones a, b, c, d ∈ T such that int(a, c) = int(b, d) = j . Then (a, b) is a step if and
only if (c, d) is a step.

Proof Denote α = spec(a), β = spec(b), γ = spec(c), and δ = spec(d). Further, consider ι = γ − α and δ′ = β + ι.
It is easy to see that δ′ lies in one of the nine closest parallelograms with the parallelogram of S at the centre. For each of
these nine possibilities (two of them are shown in Figures A8 and A9), one may draw a parallelogram of same shape in
such a way that δ and δ′ are its corners and γ lies in it.
Let S3 denote the GTS delimited by this parallelogram and having the extremity generated as δ, and similarly, let S2

denote the neighbouringGTSwith the extremity generated as δ′. Finally, let S1 denote the ι-transposition of S (FigureA10).
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Figure A10. Visualization of the proof of Lemma A.3.

Since (a, b) is a step in S it is also a step in S1 generated as γ and δ′. Applying Lemma A.1 to GTSs S1 and S2, we
obtain that γ and δ′ make a step also in S2. Then we apply LemmaA.2 to GTSs S2 and S3 and we get that γ and δ generate
a step in S3. Finally, applying Lemma A.3 once more gives that γ and δ make a step in S, as well. "

LemmaA.4 Consider a comma κ and two tones t, u that are inner tones or κ-edge tones. If ▹ (spec(e), spec(t),
spec(e) + κ) and ▹ (spec(e) + κ, spec(u), spec(e)), then S is not WF.

Proof The span of (t, e) is not invariant for neighbouring GTSs, which yields a contradiction with the WF. "

Proof of Theorem 3.1 (Tight⇒WF) First, we will show that the CC implies the well-formedness for demarcated two-
dimensional GTSs (here the assumption of existence of at least one inner tone is not necessary). Consider any tones
t1, u1, t2, u2 ∈ T such that int(t1, u1) = int(t2, u2).
Denote n = span(t1, u1). This means that we have (n + 1) elements t1 = t01 , t

1
1 , . . . , t

n
1 = u1 between t1 and u1 such

that (t i−11 , t i1) are steps for all i = 1, . . . , n.
Now take the interval j = int(t1, t2) and consider the elements t i2 for i = 0, . . . , n such that int(t i1, t

i
2) = j . It is easy

to see that t02 = t2 and tn2 = u2.
LemmaA.3 implies that (t i−12 , t i2) are steps for all i = 1, . . . , n and LemmaA.2 implies that they are steps in any neigh-

bouring GTS. Therefore, for any mappingN : K → {−1, 1}, we have that spanN(t2, u2) = n.According to Definition 2.7,
this means that S is well-formed. This finished the proof of the first implication.
(WF⇒ Tight) We will prove the other implication by contradiction. Therefore, assume that S is WF and loose. Then,

for some m, n ∈ T and κ ∈ K , we have:

▹ (spec(e), spec(m), spec(e) + κ) and ▹ (spec(e) + κ, spec(n), spec(e)).

As S contains at least one inner tone, we may assume that one of the tones m and n is inner. Without loss of generality,
we may assume that n is an inner tone. Applying Lemma A.4, we obtain that m is a λ-edge tone where {κ, λ} = K .
Consider two sets:Mλ = {k ∈ T |spec(k) − spec(e) = rλ, r ∈ R} and Tλ = {k ∈ T |spec(k) − spec(n) = rλ, r ∈ R}.

Mλ is a set of all λ-edge tones and Tλ is the ‘parallel’set containing the tone n. Denote r0 = min{r ∈ (0, 1)|spec(e) + rλ ∈
Mλ} and m0 = spec−1(spec(e) + rλ). Then Mλ and Tλ are tones of one-dimensional GTSs Sm and Sn, respectively,
generated by η = spec(m0) − spec(e) ∈ Z[X]. The well-formedness of S implies the well-formedness of these two
one-dimensional GTSs.
From the results of Carey and Clampitt, we know that WF one-dimensional GTSs contain steps of up to two different

sizes. It is easy to see that the difference between the larger and the smaller steps equals the comma. Denote sl , ss , and
c = size(spec(e), spec(e) + λ) the sizes of the larger step, the smaller step, and the comma, respectively. The same sizes
apply in Sn, Sm, and also in S′

m, the neighbouring GTS of Sm.
Without loss of generality, we may assume that (m, e) or (e, m) is a step in Sm. If (m, e) is a step, then

size(spec(e), spec(e) + κ) is larger then sl and there is at least one tone of Sn (i.e. an inner tone) between spec(e)
and spec(e) + κ . Then Lemma A.4 leads to a contradiction. Therefore, (e, m) is a step in Sm.
Taking into account again Lemma A.4, there are only two possibilities for the position of spec(e) + λ.
Case 1: ▹ (spec(e), spec(e) + λ, spec(m)). In this case, (e, m) is a step also in the neighbouring S′

m with lesser
or equal size (of the corresponding intervals) than in Sm. Therefore (e, m) is the larger step in Sm and we have
size(spec(e), spec(e) + κ) ≥ sl . Then there is a tone of Sn between spec(e) and spec(e) + κ , and Lemma A.4 leads
to a contradiction.

Case 2: ▹ (spec(e) + λ, spec(e), spec(m)). Finally, in this case, (e, m) is the smaller step in Sm and it is the larger
step in S′

m. Therefore, there is a tone of Sn either between spec(e) + λ and spec(e) or between spec(e) and spec(m). In
either case, Lemma A.4 gives a contradiction. This finishes the proof of the theorem. "
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Appendix 4. Additional figures

This appendix contains additional figures illustrating two-dimensional WF GTSs and the related g-Tonnetze discussed in
Section 4: the hexatonic scale, the octatonic scale, and the chromatic scale as generated by the semitone and the tritone.

Figure A11. The hexatonic scale as a two-dimensional WF GTS.
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Figure A12. The octatonic scale as a two-dimensional WF GTS.
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Figure A13. The chromatic scale as a WF GTS generated by the semitone and the tritone.
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