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Abstract. The initial five papers of this series on pattern perception treat
first, the perception of pitch in musical contexts and then, the perception of
timbre and speech. Each sound is considered to be embedded in a “context”
consisting of those sounds which surround it or coincide with it. The
apprehension of a musical pattern depends upon the perceptibility of certain
relations between, and properties of, its parts (e.g. “motif 4 is similar to
motif B” or “G is the tonic™). It is hypothesized that, because of the
limitations of short term memory, the perception of specific relations and
properties requires that certain “mental reference frames” be extracted from
the various contexts. However, a reference frame which supports the percep-
tion of any specified relation may be extracted from only very few of all
possible contexts. The choices of musical materials in both Western and
non-Western music are shown to avoid precisely such difficulties. When
they are not avoided, distortions of perception are predicted and methods
for experimental verification are suggested. This theory is then applied to
suggest new materials for the composition of both “microtonal” and “tone-
color” music. This is done in a manner which exposes the correspondence
between each choice of musical materials and those musical properties and
relations whose perception is (or is not) thereby supported.

This first paper discusses the relation between the ability to perceive
relative sizes of musical intervals and the choice of reference frame from a
given musical context.

Introduction

Since the publication of Helmholiz'’s Tonempfindungen [1] in 1862 many
attempts have been made to explain or predict the perception of complex tones.'
These have derived from speculations about difference and combination tones,
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beats and coincidences between harmonics, possible similarities between neural
pathways and electronic circuits and the accidents of cultural conditioning [2).
As vet, none of these has produced a satisfactory model for comprehending
complex auditory phenomena [3]. Those theories susceptible to application to
the perception of complex tones in their musical context have treated musical
“scales” in an essentially similar manner: Certain musical “intervals” are chosen
for specific acoustical properties (usually their frequencies form a simple ratio)
and musical scales are formed by their supenimposition.

It is now known that highly developed musical cultures exist which use
scales with great precision and consistency which contain no intervals derivable
from any of the above theories {except that of accidents of cultural condition-
ing).? Also, to most listeners, identical pairs of complex tones are not recogniz-
able as the same when embedded in different sequences of tones. Such acousti-
cal “illusions” deriving from context differences remain unexplained and, in
general, unpredictable,® except in certain cases involving classical Western
harmony.

Helmholtz, however, appears to have anticipated an alternative to the above

approaches, which is the basis of the work to be presented here ([1] pp. 252,
270):

As we have seen, then, melody has to express a motion, in such a
manner that the hearer may easily, clearly, and certainly appreciate the
character of that motion by immediate perception. This is only possible
when the steps of this motion, their rapidity and their amount, are also
exactly measurable by immediate sensible perception.*

It is also necessary that the alteration of pitch should proceed by
intervals, because motion is not measurable by immediate perception
unless the amount of space to be measured is divided off into degrees,
Even in scientific investigations we are unable to measure the velocity of
continuous motion except by comparing the space described with the
standard measure, as we compare time with the seconds pendulum. The
individual parts of a melody reach the ear in succession. We cannot
perceive them all at once.

We cannot observe backwards and forwards at pleasure. Hence for a
clear and sure measurement of the change of pitch, no means was left but
progression by determinate degrees. This series of degrees is laid down in
the musical scale. When the wind howls and its pitch rises or falls in
insensible gradations without any break, we have nothing to measure the
variations of pitch, nothing by which we can compare the latter with the
earlier sounds, and comprehend the extent of the change.’... The musical

2Java, for example [4], [S], {6]. (Square brackets indicate references.)

3Some explanations and predictions were genmerated by a primitive version of the model
described here [7).

“The italics are Helmholtz’s in [1].

*The reader can verify that it is virtually impossible to differentiate between two moderately
slow glissandi between the same two pitches when one follows a linear and the other, say, an
exponential curve.
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scale is as it were the divided rod, by which we measure progression in pitch,
as rhythm measures progression in time.®

Upon this resposes also the characteristic resemblance between the
relations of the musical scale and of space, a resemblance which appears to
me of vital importance for the peculiar effects of music. It is an essential
character of space that at every position within it like bodies can be placed,
and like motions can occur.® Everything that is possible to happen in one
part of space is equally possible in every other part of space and is
perceived by us in precisely the same way. This is the case also with the
musical scale. Every melodic phrase, every chord, which can be executed at
any pitch, can also be executed at any other pitch in such a way that we
immediately perceive the characteristic marks of their similarity

In the third of the above quotations, a scale is a divided rod. However, for
example, the major scale is unequally divided. The fourth quotation imposes n
eifect a conditions of “like motions being possible at every position.” One of the
main motivations of this present work is to make precise the nature of the
constraint which this condition imposes upon the (unequal) division of the rod.

Helmholtz’s attention was centered upon European music rather than, say,
Javanese music,, which uses musical intervals comprised of tones with irrational
frequency ratios not approximating those to be found low in the overtone series
and which employs instruments which produce inharmonic partials. This focus
upon harmonic music blurred the distinction between his belief that the entire
musical scale was “the divided rod by which we measure progression in pitch”
and his conviction that “scale degrees” were chosen so that musical intervals
which correspond to simple frequency ratios would result. It is unclear whether
it is the intervals or the scale which provides the measurements and, although he

states the latter, his explanations rely throughout on the former view ([1], pp.
253, 370):

Let us inquire, then, what motive there can be for selecting one tone
rather than another in its neighborhood for the step succeeding any given
tone. We remember that in sounding two tones together such a relation
was observed. We found that under such circumstances certain particular
intervals, namely the consonances, were distinguished from all other inter-
vals which were nearly the same, by the absence of beats. Now some of
these intervals, the Octave, Fifth, and Fourth, are found in all the musical
scales known.’

Moreover, it is by no means a merely external indifferent regularity
which the employment of diatonic scales, founded on the relationship of
compound tones, has introduced into the tonal material of music, as, for
instance, rhythm introduced some such external arrangement into the
words of poetry. I have shown, on the contrary, in Chapter XIV, that this
construction of the scale furnished a means of measuring the intervals of
their tones, so that the equality of two intervals lying in different sections

The italics are mine.
"False, of course (even if the fifths and fourths are defined by reasonable approximations to
simple ratios) e.g., Thailand and Indonesia.
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of the scale would be recognised by immediate sensation. Thus the melodic
step of a Fifth is always characterised by having the second partial tone of
the second note identical with the third of the first. This produces a
definiteness and certainty in the measurement of intervals for our sensa-
tions, such as might be looked for in vain in the system of colours,
otherwise so similar, or in the estimation of mere differences of intensity in
our various sensual perceptions.

Here we investigate the possible function of the “musical scale” (from o
point of view “chords” are a special case of scales) as a “reference frame” o
“context” which both provides measurements of musical intervals and serves
identify the “degrees” of its member tones. The treatment is independent of th
rationality of the frequency ratios which correspond to the musical intervals .
between the degrees of the scale. The “rules of musical composition” employed
by different musical cultures (e.g., the “rules of voice leading™) are interpreted as .
restrictions which preserve such properties of the musical scales employed as are
required to measure its intervals and/or permit identification of its degree
(e.g., the prohibition of approaching a “tritone” by “skip” in early European
music will be so analyzed.) Different techniques of musical composition, both i
different musical cultures and within the same culture, are considered to be-
structural (i.e., pattern-producing) devices which are here studied only in terms -
of the way in which their use is restricted by such of the above properties as-
characterize each scale and thereby determine the recognizability of patterns
produced by the application of each technique to the musical materials inheren
in that scale. (e.g., the relative absence of melodic (“*modal”) sequences i
compositions using the Javanese “Pelog” scale or the “Hungarian Minor” scale |
(in the West) will be interpreted in this manner.) '

We have said above that a fundamental theme of this work is the investiga
tion of that property of musical scales which assures that [1] “every phrase, every
chord, which can be executed at any pitch, can also be executed at any other -
pitch in such a way that we immediately perceive the characteristic marks of this -
similarity.” This property (which is obviously pertinent to the recognizability o
melodic (“modal”) and harmonic sequences) determines a classification o
musical scales into “proper” and “improper” ones. This notion will be in
troduced in the first of this series of papers, which deals solely with the ways in
which scales may provide measurement of intervals (independently of th
frequency ratios between the degrees of the scales).

The second paper develops quantitative measures of the degree to which
scale provides such measurement and also of the degree to which rapid identifi
cation of the scale elements corresponding to its different “degrees™ is facilitated
by the structure of each scale. This property has an explanatory function with
regard to the inequality of intervals in most musical scales and is obviously
relevant to “tonality” and the differing importance (i.e., “function”) of differin
scale degrees. These two quantitative measures are then related to the percep-
tibility of musical structural relations resulting from the use of corresponding
techniques of musical composition.

The third paper extends the theory to apply to the perceptions of a listener
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L (uchasa contemporary Western musician) who is familiar with many different

E

musical scales and their corresponding styles.

The fourth paper describes relevant techniques of computation and contains
samples from an available table of the computed values of relevant properties
(those above and other related ones) of both existing and possible scales which
may be extracted from thirty-one tone equal temperament (twelve was done
earlier). This table may be examined to verify that (close approximations to) the
known scales of existing musical cultures are optimal choices (given the timbres

" of the instruments in those cultures) and for the purpose of constructing listener

experiments to test the theory. The primary purpose of the whole work is to
suggest new materials for musical composition in a manner which exposes their
relevant musical properties, and it is suggested that the table be utilized for this
purpose.

The fifth of the initial series of papers is a generalization setting forth a
theory of properties preserved when a continuous space is represented by a
discrete space and is intended for application to the perception of phonemes of a
spoken language, to certain aspects of visual perception and primarily, to the
perception of musical timbres in the confext of a given set of such timbres. Again,
the primary purpose is the development of new musical materials for musical
composition (of “tone-color” music).

A later paper in this series will relate musical syntax to the above properties.
The perception of rhythmic patterns will also be treated.

The author owes a special debt of gratitude to John Myhill who, unasked,
assumed the formidable task of rewriting a major portion of the material which
follows. Whatever clarity it now possesses was his contribution to the opaque
presentation of a novice. The original version was produced in 1965, and
apologies must be given for a few out-of-date remarks and for the omission of
references to a good deal of pertinent recent work.

1. The Coding of Relevant Parameters

Clearly our perception of music is, in large part, learned. That is, (1) a listener
must extract from the raw sensory input (i.e., focus his attention on) relevant
properties of and relations between portions of the data (in effect, such proper-
ties must also be determined) and (2) he must code (classify and label) the
relevant parameters of these properties and relations in a manner suitable for
interrogation by means of feedback (checking whether his choice of relevant
parameters was correct) and suitable for further processing (e.g., combining
“ntervals” to form “motifs”, “motifs to form “phrases”, etc.). Thus by the
“coding” of a sensory input is meant the partitioning of the stimuli from that
input into classes each of whose elements is equivalent in musical function. Such
coding is, of course, different for each musical culture (as it is for each linguistic
culture; i.e., different sounds form equivalent phonemes in different spoken
languages). Since coding places stimuli in equivalence classes, ambiguity is
avoided. Also, to the extent that music resembles a linguistic system, the
efficiency with which the constructed codes can carry relevant information is
most important.
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2. The Initial Ordering

Although the perception of pitch and timbre (musical “tone color”) are interde-
pendent®, the model presented in this paper deals only with the perception of
pitch when variation in timbre is sufficiently restricted so that discrete tones can
be simply ordered (to be discussed later). The simultaneous perception of pitch
and timbre when both may vary freely requires the use of the general model to
be described in the fifth paper in this series.

First the mapping from sensory inputs to a “code” will be considered. In
effect, a possibly continuous space (over which physical stimuli range) is
mapped into a space of discrete points (the classifications of such stimuh).

We will assume that a subject can determine which of two tones with similar
quality (tone color) is higher (in frequency) or that they are the same. Such
determinations are, of course, within some tolerance. That is, two tones, which
differ by less than some listener-dependent tolerance, may be considered the
same.” Thus a simple ordering is possible of a series of discrete tones of similar
quality. Since such stimuli carry information in most music, it is from the
relations between these that a code must be selected. (It is not necessary at this
point to state precisely what such “information” is. It is sufficient that in most
music such phenomena as “wrong notes” and “being out of tune” exist).

The question which now must be considered is “What is being coded?’
Since few people have absolute pitch, we may conclude that the isolated
frequencies of the tones are not directly mapped into a code. However, we do
know that, given that all tones have similar quality, each pair, (x,y) forms a
“musical interval”'® which can be compared with all other such “intervals” for
equivalence. This, together with the condition that all tones can be simply
ordered by pitch, permits comparison of all pairs sharing an endpoint and
finally of all other pairs as well. That is, to compare (z,w) with (x,y) add u on
the same side of z as w so that (x,y) is perceived as “similar (in size) to” (z,4)
(denoted by “(x,y)~(z,u)”). Then determine whether u is internal to (z,w) and,
if so, define (x,y) as “smaller than™ (z,w) {denoted by “(x,y)<(z,w)”). In this
manner a preordering (i.e., transitive, connected, and reflexive) of all musical
intervals between tones in a stimulus  may be obtained.!' Such a preordering will
be referred to as an initial ordering.'?

However, it is by no means clear that, on the simplest morphological level,
“interval” size is the parameter that is coded. We also know that a series of
stimuli forms a “reference frame” or “context”. Such a reference frame is often

®It may be worth noting here that pilot experiments have been performed in which subjects
have selected an interval of frequency ratio 7:5 (between tones) as equal to a previously heard
interval of ratio 3:2 when appropriate changes in timbre were made between the initial hearing and
the selection.

We temporarily assume that such pairs do not occur in sequences long enough to produeg
intransitivities in the equality relation.

"Note that a “musical interval” is a pair, not an “interval” in its usual mathematical mcamn&

No metric assigning distance values to each interval is assumed. This is consistent wﬁh
present neurological evidence. [8], [9], [10], {11], [12].

21t may be possible to assign timbres to each tone such that there exist four intervals, 11,32,{3,!&
where, apparently i) <iy~iy<<is and i;~i, Such cases (if they can indeed be constructed). -
properly treated by the general model to be presented later.

.
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called a “scale” or “chord”. (Motifs and other morphological units on a higher
level are not relevant at this stage). It may be that the degrees (successive
elements) of such a scale are coded (do, re, mi, fa, etc.). However, since absolute
pitch is rare, such degrees cannot be determined unless the “scale” is de-
termined, for which it is either necessary to discriminate significant “interval”
sizes or to sharply emphasize one particular tone (the tonic) so as to fix its
position. (Otherwise one could not determine which scale degree (element) was
the first, the second, etc.)

Let us state our assumptions precisely. S (the set of all tones or pitches) is
simply ordered (by the property of being perceived as “higher” or “lower” in
pitch). A relation < (the initial ordering) is defined on .S X S which is a preorder,
i.e., transitive, connected and reflexive. Define (xy)~(zw) to mean (xy) < (zw)A\
(zw)< (xy) and (xp) <(zw) to mean (xy) < (zw)\—((zw) <(xy)). Require that
always (xy)~(yx), and moreover

x <y < z=(xp),(yz) <(xz),” 2.1

ie, any proper subinterval of an interval (xz) is smaller than (xz). This
completes the list of our assumptions about the orderings on § and on S X S.
When musical timbre is such that these assumptions are not satisfied, this model
does not apply, although the general model to be presented subsequently applies
to a large number of such cases.

Let us consider further reasonable requirements, which are satisfied in most
musical applications, but will not be assumed in the following except where
explicitly noted: In case the relations < on S and equality (“~") of intervals
are taken as primitive, the initial ordering can be constructed out of them by the
method suggested a couple of paragraphs back, i.e., we can define

() <(zw)e(Fu) () ~(2u) A\ (z <u<wor w<u<z)) (2.2)

and this definition will guarantee that 2.1 holds. However, 2.1 holds also in some
models in which 2.2 does not, and it is conceivable that such models may find
application to situations in which changes in timbre with pitch lead to violations
of 2.2. For an example of a model in which 2.1 is satisfied but 2.2 is not, let
S={A,B,C), A<B<C (these are the letter names for musical tones, not
variables), and (BC) <(AB)<(AC); then there is no u between A and B for
which (BC)~(Au), contradicting 2.2. (Intuitively we would explain this by a
‘missing note’ between A and B.) Even in models which do satisfy 2.2. the
requirement of additivity may not be satisfied, i.e. we may not have

x<y<zAu<o< w/\(xy)ﬁ(uv)/\(yz)~(vw)=¢(xz)~(uw). (2.3)

For example, let S, be the set of all points on a “V”-shaped figure with an
obtuse angle, let a < b mean that a lies to the left of b and let (ab) <(cd) mean
that the distance from a to b (measured along a straight line) is less than that
from ¢ to d; then 2.1-2.2 are satisfied but 2.3 is not.

BNote that “<” denotes relative pitch height when applied to elements of S, and denotes
relative interval size when applied to elements of § X §.

i
|
!
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For convenience, when 2.3. holds, we define addition and subtraction by

x<y<zo[(xz)~(xp)+(yz) ]
A[ () ~(x2) = (y2) N[ (y2)~(x2) = () ]. (24)

3. Proper Mappings

We will now consider all possible ways of defining a function which will map
S X S (all pairs of tones forming musical intervals) into a set of discrete points,
C (the code), by some function F: S X §-»C. These mappings will be classified
according to whether the following conditions are met for all x,y,z,w,k, /€S
where (xp) € (zw): "

[F)=F () JA[ () <(k) <(z%) | = F (ki) = F (x7) (3.1)
(x9)~(2w)=> F (x7) = F(zw) (32)

A pictorial representation of a violation of condition (1) and (2) is convenient.
(In this diagram, if (xy)~{(zw), both will be represented as a single point on line
S X S8).

SXS SXS

(x,y)

(k, &} <
’ {x, v} '

{z, w) ¢s

(z, w)

(1) is violated {2} s violated

Thus condition (1), restated, says that all points within an interval in S X §
whose endpoints have the same image, will also have that same image. Hence, in
this case, the capability for discriminating differences between musical “inter-
vals” (pairs) interior to such intervals in S$X S is not required. Since the
discrimination of pitches differing by less than some tolerance, ¢, is not possible,
the ordering of musical “intervals ” which differ by less than such tolerance is
also impossible. Thus it would appear that condition (1) is essential where (xy)
and (zw) differ by less than . It will be later shown that ¢ is dependent upon F
when F is defined by the configuration of points in a “reference frame”.

“In the general model to be discussed subsequently (xpy)>(zw)—>F(x,y) > F(z,w) is used in
place of 3.1. Later we will see, that given our assumptions and the definition of F to be used, these
are equivalent.
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Henceforth mappings satisfying condition (1) as well as their domains will be
called proper, those satisfying (1) and (2) will be called strictly proper and all
others improper. Elements (xy), (zw) of S X § not satisfying condition (2) will be
called ambiguous, and each element (k/) of S XS not satisfying condition (1)
will be called contradictory.

A mapping is proper iff the inverse image of any point of C is a (connected)
piece of S X S, i.e. a set 4 C S X S for which

(o) <Ky <(z2wIN(xp ), (zw)EA=(kI ) E A.

For such a mapping, all ambiguous tones are at the endpoints of the connected
pieces. It is strictly proper iff there are no such tones.

Since a particular set of tones usually comprises the material of a given
musical composition or section thereof, and since at least some of these tones
form a local “reference frame”, usually called a “musical scale” or “chord”, a set
PCS, the reference frame, will replace S in the preliminary discussion. Till
further notice P will be assumed discrete, countable and infinite in both
directions, and indexed according to the ordering on S (see 2.1), i.e.

P={....p_2P 1 PoPvPp-- )

The initial ordering of S X § induces an ordering of P X P; the function
fiP X P—>Z defined by

f(pp)=li—Jl,
which we can call the diatonic distance of p; and p;, suggests itself’ as a natural
candidate for a coding of the intervals (p,,p;) into the natural numbers. (Intui-

tively, this means we measure the distance between two notes of the scale P by
counting the number of scale notes between them.) We easily prove the

Proposition. (a) f: P X P—positive integer is proper iff
li—jl<|k— [|=>(PnPj) <(pwp)
(b) fis strictly proper iff
li—jl <lk=1l=(p;p) <(Pr-P)
Note that 3.1 follows trivially from
(©) () <(zw)>F(xy) < F(zw)
regardless of the definition of F. However (c) does not follow from (3.1) unless F=f

as defined above. When F=f (2.2) is not required to prove that (c) follows from
(3.1) (and hence the equivalence of (c) and (3.1):

SJustification for the choice of f is given in the description of the general model.



P

|
|
|
1
!
:
e

208 D. Rothenberg

Proof. Suppose (c) is false when F =, i.e. pp; <p,p,; and f(p,.p,) > f(ps.p). By
the definition of f, since P is simply ordered éq( J(pp) = (PiPINI(P; Cp, C
pN(p,Cp,Cp)D, ie. p,€P. But by (2.1), (p.p,)<(p,p). Hence (3.1) is
violated, i.e., f(p;,p,)=f(PrP) N (2P) <(£,:1)) <(Prpy) and f(p,p) > f (pk,péi

Intuitively, f is proper if knowing the number of scale steps between two
scale notes is equivalent to knowing a certain range between which the musical
interval of those notes must lie—i.e., if it makes sense to speak of (diatonic)
“seconds”, “thirds”, “fourths”, etc. relative to the scale P; condition (a) is simply
that no second should be bigger than a third, no third bigger than a fourth, etc.
is strictly proper if knowing the musical interval between two scale notes
determines the number of intervening scale steps, i.e. all (diatonic) seconds are
strictly Jess than all thirds, all thirds less than all fourths, etc. (not merely less
than or equal to). A scale which is proper but not strictly proper contains
ambiguous intervals, i.e. equal intervals which contain different numbers of scale
notes between the endpoints. However, the amount of ambiguity is limited: an
ambiguous interval can have at most two sizes, measured by diatonic distance.

To familiarize the reader with the notions of propriety and strict propriety,
which are fundamental to all that follows, consider a few scales. The ordinary
major scale can be represented as

...C D E F G A B C D E...
2 2 1 2 2 2 1 2 2

where the numbers written underneath represent the distance in semitones
between adjacent notes. We tabulate; in the left column are listed diatonic
distances, in the right the possible corresponding intervals (measured in semi-
tones). Asterisks mark the ambiguous intervals.

DIATONIC DISTANCE INTERVAL
“Second”; f=1 1 (E-F,B-C); 2 (C-Detc)
“Third”; f=2 3 (E-Getc); 4 (C-Eetc)
“Fourth”; f=3 5 (C-Fetc); 6* (F-B)
“Fifth”; f=4 6*(B-F) ;7 (C-Gete)
“Sixth”; f=5 8 (ECetc); 9 (C-Aetc)
“Seventh”; f=6 10 (D-Cetc.);11 (F-E,C-B)
“Fighth”; f=7 12

Obviously the mapping f which assigns to any scale-interval its diatonic distance
is proper (no second is larger than any third, etc.) but not strictly proper; the
half-octave is ambiguous since it can represent a diatonic distance of either a
fourth or a fifth. Notice that the diatonic distance in the left-hand column is
given in the usual musical terminology: this is greater by one than the value of
S(p,p)=li—j|. This convention will be used with other scales below: i.e. to say
two scale-notes have a diatonic distance of a “second” is to say there are no
scale notes between them, to say they have a distance of a “third” is to say there
is one scale-note between, and so on. Names of diatonic distances will be written
in quotes when this usage conflicts with standard musical terminology. Instead
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of saying that the mapping f is proper but not strictly proper we shall sometimes
say that the major scale itself is proper but not strictly proper; likewise for the
other scales about to be discussed.

For an example of a strictly proper scale, consider Chinese pentatonic, i.€.,

C D E G A C D
2 2 3 2 3 2
. The table is
DIATONIC DISTANCE INTERVAL

“Second” 2(C-Detc) ; 3 (E-G,A-C)
“Third” 4 (C-E) ;5 (D-Getce))

“Fourth” 7(C-Getc) ; 8 (E-C)
“Fifth” 9 (C-A,G-E);10 (D-Cetc.)
“Sixth” 12

Finally here is an example of a scale which is not proper at all—the
“Japanese Pentatonic”:

A B C E F A B ... i
2 | 4 1 4 2

with the table

DIATONIC DISTANCE INTERVAL
“Second” 1 (B-C,E-F); 2 (A-B); 4(C-E,F-A)
“Third” 3 (A-C) ; 5 (B-E); 6(F-B)
“Fourth” 6 (B-F) ; 7 (A-Eetc); 9 (C-A)
“Fifth” 8 (A-F,E-C);10 (B-A); 11 (C-B,F-E)
“Sixth” 12

This scale is improper because e.g. the “second”: C-E is bigger than the
“third” A-C.
We define (when P is finite)'

8UE(Pi+jan)
8 =min§;, S_J,Emaxﬁ,j
h J J

and row tolerance T, and minimum tolerance T as follows:

1 if 8, >8
n=l 0 its,,~d
-1 i, <4

'SNote that §; denotes that interval which has lower endpoint p; and diatonic distance i.
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By Propositions (a) and (b):

1 for a strictly proper scale
(841,584 jikii=1,2,3,...)
T=minT,=] 0 for a proper, not strictly proper one
(81,284 Jikii=1,2,3,...)

. —1 for an improper one

If 2.2 applies and (p,g)~§;,, and (_r,s)~6‘;, there is an x €S with (g, x)~
T. If 2.3 applies, we define 7;=§;,,—§; instead of as above (§,=0 by defini-
tion) and again T=min 7;. The following diagram illustrates a proper mapping;

S%S flpp) =c

inf (&)
i
i
sup (6,)
i

inf (8. ) e
i

ambiguity: T,,,=0

i+ 2
T,n{
| i+ 3
T.oss
nf (6,00 )
i i+ 4
sup (§;, 4 )
i S

Note that f, when considered as a “distance function” provides a pseudo-
metric on P; i.e., the following conditions are satisfied:

(@) f(p.p)=f(psp)
(b) f(Pi?pi)=0
(©) f(pup)+f(ppp) > f(pipi)

“271n (c) is really “=", of course.
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In applications to the perception of pitch, distortions of perception of
musical “intervals™ corresponding to ambiguous pairs (in § X §) may be ex-
pected. However, these “intervals” may be perceived in terms of other musical
“intervals” which are not ambiguous but which have an endpoint in common
with the ambiguous “interval” in question (more will be said of this later). In
fact, music is written so that this is possible. (E.g. in music using the “major
scale” in which the “tritone” is ambiguous, skips from either of the tritone’s
endpoints are consistently avoided so that it may be perceived as a “perfect
fourth” or “perfect fifth” according to the tone(s) adjacent to its endpoint(s)
(i.e., if the tritone is FB and the B moves to a C or an A or if the F moves to an
Eor a G, it is a “fourth”; if the B moves to an DP or a B or if the F moves to
D* or an F* it is a “fifth™).

4. Mapping from P X § into C

We have described in the previous section a subset P of the “stimulus-space” S;
P is to be thought of as a “scale” used in measuring distances between points of
S. If the distance between two points p,p, € P is to be measured, we simply
count the number of intervening points of P, i.e. f(p,,p;)=|i—j|. Now we want
to extend f so as to be able to “measure” the distance between any two points of
S, or at least of as many pairs as possible.

We shall approach this problem in stages. First consider the case where we
only want to measure the distances from points of P to points of S-P. The
natural way to do this is to divide S (or as large a subset of § as possible) into
neighborhoods R,, R;, R,... with each p,€ R,. The distance of x € R, from p; 1s
li—j|; i.e. to measure the distance from a “scale” tone to a “chromatic” tone we
measure its distance from the “scale tone” of which the latter is felt to be an
“alteration”.

Formally we proceed as follows: A modification of P is defined as an
assignment to each p; of a “neighborhood”, i.e. a set R,C S containing p;. The
induced distance-function g is defined by g(p;, x)=|i— k| when x € R,, and the
modification { R;} is proper if g is. (The definition of g only makes sense if the R,
are disjoint; this is so in all interesting cases. Cases where the R; are not disjoint
will be treated later.) We do not in general require U;R;=S, but we seek to
make U, R; as large as possible.

We also seek to make {R,} proper. Clearly this can be done only if P is; so
assume P proper and let p, € P. The range R, of p, is the set of all x€ S — P for
which P’'=(P—{p,)U{x} is still proper (where, of course, f is applied to the
elements of p, as indexed according to the ordering on §). We prefer that the
range of each p; is an interval C[p,_,,p;,,]; the elements of R, —[p,_,,p;, )] are
called wild points.

Example worked out. Let S be all pitches (the whole real line) and let P be
the major scale

-1 -y 0 &6 2 4 5 7 9 11 12

B C D EF G A B C
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Here the seconds range from  1-2 semitones
Here the thirds  range from  3-4 semitones
Here the fourths range from  5-6 semitones
Here the fifths  range from  6-7 semitones
Here the sixths  range from  8-9 semitones
Here the sevenths range from 10-11 semitones

What is the range of C', i.e. how far can we change the pitch of C and still
have a proper scale? If we change its pitch downwards, say by y semitones, then:

The seconds will range from I-yto 2 + vy semitones
The thirds  will range from 3-yto 4+ y semitones
The fourths will range from 5—y to max(6, 5+ y) semitones
The fifths will range from min(6,7— v) to 7+ y semitones
The sixths  will range from 8§~y to 9+ vy semitones
The sevenths will range from 10—y to 11+ y semitones

For propriety it is necessary and sufficient that 2+y<3—vy, 4+y<5~—y, etc.

Le. y<1/2. If on the other hand we change the pitch of C upwards, say to +3§,
then:

The seconds will range from min (1,2—§) to max (2,1+86)
The thirds will range from min (3,4 - 8§ ) to max (4,3+4)
The fourths will range from 5— 8 to max (6,5+ ) etc.

For propriety, max (4,3+8)<5—8 ie. 8<! is necessary: if we tabulate the
possible sizes of fifths, sixths, and sevenths in the scale (P—{C})U {8} we sec

that §=1 is sufficient, and so the range of C is [—1/2, +1]. Likewise we
compute:

The range of D is [l%,lﬂ

The range of A is
The range of B is

[Note: if D is pushed up to D¥, the “second” C-D¥ is larger than the “third”
D*-F; if it is pushed down to DP, the “second” D-E is larger than the “third”
B-DP": either way the resulting scale is improper. Note also that if F is lowered at

1"Henceforth “C” will denote the musical pitch by that name, rather than the “code” previously
mentioned, unless explicitly noted to the contrary.
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all, or B raised at all, the “fourth” F-B becomes larger than the “fifth” B-F;

hence F can only be modified upwards, and B only downwards].
In this case (major scale) the range of each note is an interval containing that

—2—]0]2345678910111213

B ¢ D EF G A B C

- which is what we want; however, there are gaps not covered by this partition

ie. UR#S).
It is unfortunately not in general true however that the partition into ranges
has this neat appearance. In particular consider the following non-periodic scale

(ie. it does not repeat at the octave).

C ¢C* D E F* G B® .. (*)
0o 1 2 4 6 g8 10

formed by adjoining one only C* to a whole-tone scale. This scale is proper, for

The seconds range from 1-2 semitones
The thirds range from 2-4 semitones
The fourths range from 46 semitones
The fifths range from 6-8 semitones
The sixths range from 8-10 semitones

and in general the nths (n > 3) range from 2n —4 to 2n—2 semitones. Evidently
replacement of C* by any note in the scale would not disturb propriety. Thus
the range of C* is not an interval, but includes the “wild notes” D*,F,G,A,B,
all of which are separated from C by one or more scale notes. The above scale
has a plethora of ambiguous intervals: more specifically it has as many as
possible, i.e. for n=2,3,4,5 there are diatonic n™ which are equal (in the sense
of ~) to diatonic n+ 1%°. This motivates two definitions and a theorem.

Definition. g€ S— P is called wild if for some i,qER, but G&[p;_ 1 Piv 1)

Definition. P is called highly ambiguous if for i=1,2,3,... there exist J k with
(Pj—1=Pj+1)~(Pk,Pk+i)-

Theorem. A necessary condition for the existence of wild notes is that P be highly
ambiguous.

Proof. Let g be wild, say qE}"f, -1 p,_ 1»Pr+1)- Without loss of generality we can
assume ¢ >p, ;- Let p, (where s< ¢+ i) be the highest note of P which is below
g. To show that P is highly ambiguous, it suffices to prove that

(P:~1aPr+i)~(Ps~Ps+i) (N

for each i >0. Since the former interval has diatonic distance i +1 (in P) and the




q&«mw,w DR ——
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latter has diatonic distance i and P is proper

(Pr=15Pr41) 2 (PssDya i) )]

Let P'=P—{p,}uU{q)}; P’ is proper since qeﬁ,. The diatonic distance from
p,_, 10 p,,, in P’ is i, because p, has been left out; and that from p, to p,,, is
i+ 1, because ¢ has been put in. By propriety

(Pre1Prs1) <(PysPes )

which combined with (2) yields (1) and hence the theorem. O

Note that if 7, >0 for any i, no wild notes exist.
The following facts are just as easily proved:
If P is proper and without wild notes, then

I. The range of each scale-note (i.e. element of P) is on interval about that
scale note;
II. The intersection of the ranges of two consecutive scale notes is either
empty or consists of a single point;
IH. If every two consecutive ranges intersect, then

Note that the union of the ranges may not be the whole of S.

The work of computing ranges can be shortened and systematized as
follows: Let P be proper and without wild notes, and let it be required to
compute the range R, of p,. Define for i=1,2,3,..., §;* =the smallest (accord-
ing to the initial order on S X §) “i+ 1% (i.e. (p;,p,,) such that |/ — m|=1i) except
possibly the one whose right endpoint is p,.

8,” =the smallest “/ + 1*" except the one whose left endpoint is p;,
3-’,+ =the largest “i + I*"” except the one whose left endpoint is p,.

8.~ = the largest “/ + 1°” except the one whose right endpoint is p;.

We have easily for x € R,

., 8t
(pk—l x)<—‘jl} i=0,l,2,... (3)
(-x’pk+i)<§i+l @
8, <(x.py s,
: (X Pk+‘+l) i=1,2,3,... (5)
;T <(pk—-i—-bx) (6)
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Consider for example (6); the interval (p, _,_,x) is a diatonic i+2™ in the
scale P'=P—{ p,}U{x}; by propriety it cannot be less than any diatonic i + *
in that scale, and in particular not less than any diatonic i+ 1% in P except
possibly one of those with endpoint p,, which do not exist in P’. However
neither can it be less than (py.py . 1); for if it were either (Case I) x <p,; but then
the diatonic i + 1% (x,p, ) in P’ would be greater than (p,,p; ;) which would in
turn be greater than the i +2™ (p,_;_,x), so that P’ would be improper; or else
(Case 1) x>p, and (PPisd) ® (Prei15X) > (Piceim1:Px) > (PisPic+i) (by pro-
priety of P), contradiction. Thus the only diatonic i + 1 in P which (p,_;_,%)
can be less than is (p, _;,p,); but that is exactly what (6) says. (3)-(5) are proved
similarly.

It would help greatly in the solution of our problem if for proper P without
wild notes we could prove that the modification {R;} was proper. In fact this is
not so, in general, even if P is strictly proper. Counterexample: Let P be the
four-note scale CEGB, thus

-5 —1 0 4-y 4 4+86 7 11 12 16 19 23
G B C E G B C E G B

We leave it to the reader to verify strict propriety and the absence of wild
notes.

The “seconds” range from 1-4 semitones
The “thirds” range from 5-7 semitones
The “fourths™ range from 8-11 semitones
The “fifths” are all 12 semitones

We inquire as to the range of the note E. If we change its pitch downwards,
say by y semitones, then:

The “seconds” range from min(1,4—7y) to max(4,3+y) semitones
The “thirds” range from 5—-y tT+y semitones
The “fourths” range from min(8,9—y) to 11 semitones

For propriety we must have 4<5~v,7+y<8,7+y<9—7, ie, v< 1. If we
raise E, say by & semitones, then:

The “seconds” range from min (1,3—8) to4+6 semitones
The “thirds” range from  min (5,7—8) to max (7,5+8) semitones
The “fourths” range from 8-4§ to max (11,94 8) semitones

and we need 44+8<5, 4+8<7—8, 7<8-8, 5+8<8~-4,9+8<12, ie 6<1
Hence the range of E is [E®, F]=[3,5]. _

Now consider the modification {R.}. It induces the distance-function g,
defined by

g(p,x)=1i—k| for xEI?,L..

P P — W
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In particular g(C,F)=1 while g(B,E*)=2. But (C,F)>(B,E"), so g, and hence
{R;}, is improper. So our hope, that we could make proper modifications, and
hence extend f: P X P—>C to g: P X S—C by simply taking the ranges as our
neighborhoods, is not supported. However, a variation of the range idea will
now be shown to work.

Suppose a scale P is given, proper and without wild notes, and suppose we
wish to determine a maximum proper modification of P. This means putting an
interval R, round each p, € P which is as large as possible consistent with
propriety. Consider for example the “scale”

Py Po P1 P2 Py Pa
B C E G B C

Jjust discussed. We must pick, for each of the four notes CEGB, both an upper
and a lower limit of its R;, and define R, as the closed interval bounded by these
two limits. There are thus eight points to be chosen altogether, two for each note
of the “scale”. There are 8! orders in which these eight decisions can be made

and these will lead to 8! maximal proper modifications of P not all of which are
distinct,

Our chosen order might be for exampie
Upper limit of Ry
Lower limit of Ry
Upper limit of R
Lower limit of Ry
Upper limit of Ry
Lower limit of R
Lower limit of Rg
Upper limit of Ry

and at each step we use inequalities analogous fo (3) and (5) above to determine

an upper limit, and inequalities analogous to (4) and (6) to determine a lower
one.

To find the upper limit of R (henceforth we set R, =[p,”,p,"]) we must
satisfy

(Pr-nEN)<8 (i=0,12,...) ()
and
§<(E*.p.,)  (i=1,2,3,..) (5)

analogous to (3) and (5) (here & and & are the smallest and largest i+ 1°%,
respectively, in P. Also we must have

(pi-»EY)<(E".pis2) (i=123,...)
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Joint satisfaction of these three inequalities is equivalent to propriety of the
{ modification

(C).[E.E"].{G}.{B}.

It is easily seen that E* =F is the highest E* satisfying these conditions.
Now we want to choose an E~ so that {C},[E™,E™] {G},{B} is proper. The
corresponding inequalities are
(E7pe) <8y (1=0,1,2,..) (4)
§<(p_»E7)  (i=1,23..) (6)
(E7p)<(p_,E7)  (i=123,..)

1 which gives E® as a lower bound on E™. This is not strict however, for we saw
above that

{C},[E*F].{G).{B) **)

is not a proper modification of C,E, G, B. This is because the above modification
(**) calls the interval (B,E®) a “third” and the larger interval (C,F) a “second”.
Hence E must not only satisfy the given inequalities but also

(p-F)<(p_,.E7) (i=1,23,...)
which gives E~ =E as the only possible value comparible with E* =F.

Proceeding in this way we obtain successive modifications
R(3’=[C,C+]. [E,F], {G}. {B}
R®=[C,C*]. [EF], (G). [B"B]

R®=[C~.C*].[EF].[G".G*], [B".B"]

of which the last is evidently maximal.

General algorithm. Let P={p,,....p,} be proper and without wild notes. Let
a={(g,0,)} be a sequence of 2n terms such that each p; occurs exactly twice
amongst the ¢, once with the corresponding o=+ and once with the corre-
sponding 6= —. In the example just treated, a is

(L4 (1L =), (0, +). (3.=) (2, +). (0, -). (2. -), 3. +)).

Then the maximal proper modification of P induced by « (notation R?) is
obtained recursively as follows:'®

RE=[p7 .o 1o [ Prop ]

183We do not claim that every maximal proper modification is induced by such an a.
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where p* (with k indexing the p, in the sequence, « and g, indexing the p, in P)
is the greatest x satisfying

(P —inx) < 8%, (i=0,1,2,...)
8 <(xPyein1)  (i=123,..)
and
(P -X) <(X.Pg 4i41)  (1=1,2,3,...)
if g, is +, or the least x satisfying
(.0, s <85, (i=0,1,2,...)
8 <(py_ipx)  (i=1,2,3,...)

and
(x’pak+i)<(pa,‘—i—l’x) (i=l’2’3"“)
if o, is —; and where 8! =4,5!=§.

et max(S,M, (Po—isPar )) if 0=+
max(B,M, (P, ,pakﬂ)) if =~
and
6»M+ | . min(cjf’, (pat ’Pa,(+i)) if Opy = -+
) min(§iM’ (pak—i’pa: )) lf 0M= —
If R* is defined as above and R =[p, ,p.’] then evidently
R=UR:  UR=UR
o k a

We now define R = U,,E,(, R.=nN,R, and R=U R, and call R, the blur
of p,. We have evidently, for all a, R C R* C R. For any x,y withp, _,<y<p, <
x < py 4, define

8_,-'(.’6,))) Emax(s—’, mkax {(Pk—i’x)l(Pk—i’x) <(-’C,Pk+i+ l)},
max (3P N(rsPer ) <(Bemi-17)} )
Q‘(x,y)Emin(Q, m,:n (P NP i ¥) (2211 ) )

min (PP Pesio1) <(Piiod)))




Pitch Structures as Order-Preserving Maps 219

Then the endpoints a,b of R, satisfy

(Pr-in@)<8%,4(a,0)  (i=0,1,2,...) (3"
(boprs) <8*i(ab)  (i=0,1,2,..) (4"
§*(a,b)<(a,pisivr)  (i=1,23,..) (5")
§*a,b)<(pe_,_1nb)  (i=1,23,...) (6”)

For each k let that portion of the range, R, which is > p, be denoted by R
and let the portion which is < p, be denoted by R,”. These will be called upper
and lower ranges respectively. We similarly define upper and lower blur (R,*
and R,") and R,* and R, (where R is a proper modification). For any proper
modification R, R*={R,*} and R ~={R,”} will be called the upper and lower
half-modifications respectively. _ _

Since R, = U, R? and R, is an interval containing p,, each R, or R is a
subset of R, in some proper modification. Then, since for any /, R; is common to
all proper modifications {R*}, the set of blurs, {R;} where for any k, R, is
replaced by (R, UR,") or (R,UR,"), is a proper modification (but rarely a
maximal proper modification). This is useful because it is far less laborious to
determine R and R than R* for all a.

Since axioms (2.2) and (2.3) hold for all familiar examples in the application
to the perception of pitch, these will apply to all examples shown. The reader’s
attention will be drawn to some of the consequences of adding these axioms to
our treatment, which may be easily verified (see preceding discussion).

3k(8y_ 1~ all j=k— LK)=>R, =S (7
When no wild points exist:

(‘7})(61,;"'51,,42):’(555) (8)
(Vj)(al,j"’auﬂ )=>(B Ek—ES) 9)

(7) states that when P is an equally spaced grid with one point added the
range of that point is all of § (c.f. the scale (*) above). (8) assures us that R
covers S when “intervals” between adjacent points in P form a repeating
sequence of two alternating magnitudes only. (9) assures that R covers S when
all “intervals” between adjacent points in P are equivalent.”

5. Assignment of “Distances” to Pairs of Non-Scale Tones
(Mapping from (part of) S X § into C)

Let us recapitulate the discussion of the last section. We have supposed that a
“scale” P was given, P={....p_»p_,PosP1,P»-.-} With distance-function
f(p»p)=|i—j|. We have shown how, under suitable conditions on P (propriety

9Note that when S is the real numbers, the implications in (8) and (5) may be reversed.
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and absence of wild notes) f can be extended to a map g: P X R—C which is still
proper and indeed maximal amongst such proper mappings. This is done by
assigning to each p; a “neighborhood” R; and then defining g(p;, x)=|i—j| for
x € R;. This enables us to measure the distance between any “scale tone” p; and
“non-scale tone” x. We now wish to construct a G which will measure the

distance between two non-scale tones. This motivates a definition and a theo-
rem.

Definition. The modification {R;} is called S-proper if the mapping G: U, R,—C
defined by

G(x,)’)Ef(Pij)=“_jl (XERi’)’ERj)

is proper.

Theorem. For any proper modification { R.}, the modifications {R,*} and {R,”)
are S-proper.

Proof. Let {R;} be proper; then the mapping g defined by
glpow)=li—j|  (v€ER)

is proper. For each i let R* =[p,x]. We need to show that the function G
defined by

G(xy)=li-jl (xERTYER™)
is proper, i.e. that
G(x,y) <G (z,w)=(x,y) <(z,w)
for all x,y,z, wEUR. Let xER™, yERT, zERF, wER, ;. ,; then the

assumption G (x,y)< G(z,w) means n>>0. If now, contrary to hypothesis, (x,y)
>(z,w), we would have

(P,-,x,-+d) >(x,y) >(Z’W) >(xkspk+a’+n)

(A glance at the diagram will make all this clear).

Te-
VX"J
N
J

Ri+den
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me 8(Pixi )=d and g(Py s y4nXi)=d+n; hence (p;, X, 0) < (PiyasnXi) bY
propriety of g; hence the assumption that G is improper leads to a contradiction,
q.!e d. Likewise for R ~ O
1t will not in general be the case, however, that if R is a maximal proper
modification then R =R * is a maximal S-proper modification. However, it can
be corrected into one by expanding each of the R,* =[p,x,] downwards to
R, =[y,x;], the y, being so chosen as to satisfy the simultaneous inequalities

(yk’xk+j) g(“‘Z’vyi-errl)

forall i, k and all j >0,
(xk*j’yk) >(y:"xi+j—l)

for all i,k and all j >0. The successive y’s are adjusted in an arbitrary order
Ya(iy - ->Yagny Where P has n notes; thus for each maximal proper modification
R, R* induces n! (not necessarily distinct) maximal S-proper modifications

RE={[ Yoy Xavy I+ s [ Yatmyp Xatmy ] }5

so, dually, does R
_ From the above it is clear that the union of all S-proper modifications is
{Ry}-
When axioms (2.2) and (2.3) hold, if ¢, and c2 are constants, for all xR ™

andyER let x’=x~c andy' =y+c, and let R denote the set of all x” and
R denote the set of all y'. When PC R (or PC R ) and when 0< ¢,

¢, <min, 8, ;, R (or R ) will be called a shifted half-modification. Note that
only stnctly proper P have shifted half-modifications. All shifted half-modifica-
tions are S-proper modifications.

For realistic application all formulae should be adjusted so that a listener’s
inability to distinguish two pitches which differ by less than some listener-depen-
dent tolerance, €, is considered. Because of the resulting mathematical complica-
tion, this will be deferred till the end of the paper.

6. The Periodic Case, the Matrix ||a;]|

“ P has period n if for all i,j,(pP)~(P;snPi+n) and if n is the least positive
: integer satisfying the condition. That is, for all 1,],8, ~38; When P is periodic

Lj+n°
the numbers of inequivalent pairs less than any gwen ’i)alr (p.p;) is obviously

1 finite.

| This guarantees that the positive integers suffice to index the rank order of

all pairs 8,, according to the preordering (initial ordering) on P X P. Thus when
P is periodic we define the matrix [la;(P)|| (the argument P will usually be
omitted) whose elements, o, are the rank of each §; in the preordering on P X P

(i.e. the images under the mapping onto the posmve integers). Also, when i=0
1 we define a,j—() Smce 8,~8, ;. all entries in the matrix ||ay|| are determined
by columns 1,.
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Note that all formulae and propositions can be restated with an “a”
substituted for “8” with no loss of validity (since the mapping from ||§;]| onto
llal| is order preserving). Also when a metric assigning values to each pair in
P X P is known, the matrix ||§;]|, which contains such values, is also defined.
When axioms (2.2) and (2.3) apply, all entries in matrix |ja;|| are determined
by the first n—1 rows of columns 1...n:

ay g, a; ,

Xn—1,1 -0 Qa-1)n

which we call the reduced matrix of P. Define K as the first a; which is
independent of j (i.e. K=a, ; for any /). Then the reduced matrix is determined

by K and the first n(n—1)/2 elements of the first [n/2] rows™ of [lell, since

&, =K—a, (i=1,..,n)
(proof is left to the reader—note that axioms 2.2 and 2.3 need not apply).

It is clear that in the periodic case no wild notes exist. For example in the
ordinary major scale which repeats itself after 7 notes, all octaves are equal; in
general, in any periodic scale that repeats itself after n notes, all n+ 1*s are equal
—i.e., the scale is not highly ambiguous, which we say in Section 4 was a
necessary condition for wildness.

In those periodic cases where a metric is given by embedding P in the reals
so that the definitions of addition and subtraction (of musical intervals) apply in
their usual numerical interpretation (i.e., axiom 2.3 holds and definition 2.4

applies), we have

(PP ) =(PPis )+ (Pisi P + - +(Pirj—1Pissh
jHi=1

8:',‘ 2 81k

k=
and so ||3;|| may be specified by its first row

lP(P)""(61,1‘:“’\1,2- "Sl.n )-

Also, in such cases, the formulae for the computation of R and R can be
simplified and these are easily computed. Then R, =[P, — 8, ,p, + 0,*], where, if
all column subscripts are made positive (modn; ie., j+n=j) and row n+1 is
added to reduced matrix ||§,||, we set

i 0"+=qinli.g_,,[(ajcﬁl“3q,k)’(84*""_8‘7"‘"")/2] )
01: - qinlj?.n [(8:q+ 1 Sq,k ): (8q+1,k—q—l —8‘1»" )/2] (2)

] The reader can also verify that R, can be computed from the following
simple formulae, where o, and o, correspond to upper and lower bounds on

®n this discussion the use of square brackets “[ ] indicates that the fractional portion of the
enclosed quantity is to be dropped.
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8 {&‘Pk)

o = lel-lrll (41— 8 i)

8= n}(in (6i+ 1,k —max (65,054 ))

0 = ?lifll(_i’+ [ 8:',1()

- All other inequalities in this section can easily be replaced by similar
1 formulae (when the stated necessary conditions hold). These methods apply to
| all examples that will be shown.

In our application we must consider that most “musical scales” are dupli-
cated at the octave, although many have a period which is a fractional portion
of the octave. Since n is the period, 3KV,(K~4§, ;) and this K is the interval
which comprises a cycle. However, it is convenient to represent intervals as
fractions of the octave cycle (when such exists). Accordingly we define n=wn
where w is the number of n-cycles in an octave?' and we let y(P) contain 71
terms:

\P(P)=(81,161,2~~81,5)

Then let m=wK and m will be the number of units (e.g. cents or semitones) in
an octave cycle. When m is an integer, it may be interpreted as an “equal
temperament” system. Those (P) where w > 1 will be called symmerric.

Now some examples will be shown and the results will be interpreted:

Example 1. This is the familiar “major scale” of Western music, in its tuning in
the 12-tone equal temperament system. S is assumed to be the reals, axioms (2.2)
and (2.3) apply, and P is periodic (K = 12)—hence a clockwise circular diagram
is used where each pair is an arc on the circle. To avoid using a spiral
representation, (p,p;) and f(pp;) will be measured clockwise from p; to p;. Thus,
instead of writing “(pp,,,)” when j<i, we write only “(p;p;)” which dis-
tinguishes it from (p;p,), and all our arithmetic is mod K=12. Also, f(p,p)+
1  f(pp)=n=7 (the number of elements of P in a period). In this example
numerical values will be assigned to each (pp;) according to the number of
semitones in each such musical “interval” (in 12-tone equal temperament). Note
that in this example, for all i,/, 8, = a;.** The diagram shows the mapping from R
(on the inner circle) onto P (on the outer circle). The numbers on the circles are
elements of S. Elements of P are written on the outside of the outer circle. Solid
lines show the boundaries of each R; and dotted lines those of the R, (the R, are
shaded in the diagram). P is indexed so that p; is the “fourth degree” of the
major scale (F in C major). (The reason for using the Lydian mode will be
§ explained in the next article in this series.) For convenience, the musical names
of each p, when P is the C major scale are shown enclosed in brackets on the
outer rim-of the outer circle, as are the “degree” names of each p, in conven-
tional musical language:

21An octave need not always be used. It is possible to cycle at frequency ratios other than 2: 1,
although musical examples are extremely rare.

”lla,,»ﬂ is obtained from [|8;|| by replacing the smallest element by 1, the next smallest by 2 and
so forth. |yl =1|8;] because all chromatic distances (in the 12-tone system) occur as diatonic
distances in the major scale.

L
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(F) {4th degree)
(E) P, £y
{3rd degree} 115 0 5

4 P; (A} (6th degree)

)Py 65 5 55

{15t degree) P, [7th degree)

{81

2 2 2 1 2 2 11Ty,=1 [allentriesin

4 4 3 3 4 3 3|T,=1 |rowzero=0,

® 5 5 5 5 5 5|T,=1 |seepage9
||a,~j]|=||80|]= 7 7 7 ©® 7 7 71 1T3=0

9 9 8 8 9 9 8|T,=1

I 10 10 10 1t 10 10 |Ts=1

1212 12 12 12 12 12]T,=1

T=0, P is proper, ( p,,p,) and ( p,.p,) are ambiguous.

For convenience, the above diagram will be drawn in linear fashion showing
only one cycle. Each R; will be shown by brackets enclosed on top and bottom
and each R; by a darkened rod. This technique will also be used for ensuing
examples:

st (2rc 13rd (4th (5th (Gth {7th {8th
cegrea) degree} degree) degree) degrest degree) degreel degree}
C o] € F G A 8 C
P, Py P, P, P, [ Py Py
t [ | | o
: | ! i i
P v ey =y eyt cad e
S A N SN P u— — LS T—
7 8 9 10 1 o 1 2 3 4 5 8 7

Example 2. This is the familiar “major triad” in its tuning in the 12-tone equal
temperament system (discussion of previous example applies). If P is a C-major
triad, p, is the “fifth” of that triad (G). The proper modification obtained from
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the stepwise maximization of R, ,R,".R,",Ry",R*,R;" is shown by *“—-".
(The same result will be produced by any other sequence where all R, and R~
~whose corresponding extremes of R,* or R,” are quarter tones are computed
last).

c £ [¢] C
P, Py P, P
| | |
" I L N e s e " —
N A ) WA "
L ——d L J 1. -3 L, 4
5 [ 7 8 g 10 11 ] 1 2 3 4 5

5 4 3 32 1
13l=19 7 8 llagli=16 4 5
2 12 12 7 7 7

P is strictly proper (there are no ambiguous intervals). fla; || will be discussed
in the next paper in this series.

Example 3. This is the “melodic minor scale” in its ascending form in the
12-tone equal temperament system. Again, in this case llell =118l If P is an A
melodic minor scale, p, is the “third degree” of that scale:

A 8 [ o £ F# G# A
PG PT P1 #p P:l Pﬁ F5 PE
? b | ! ! !
N N
T e 7 8 s ow w0 o2 3
2 2 2 2 1 2 1
@ @ @ 3 3 3 3
@ @ 5 5 @ 5 5
eyl =18;ll= 71 ® ® 71 7
9 9 ® 9 9
11 10 10 10 10 1t 10
k12- 12 12 12 12 12 12

P is proper, all encircled o, correspond to ambiguous intervals.

Example 4. This is the familiar “minor triad”. If P is an A minor triad, p; is the
“fifth” of that triad (E). The proper modification obtained from the stepwise
maximization of R, ,R;*,R;,R;", Ry Ry is shown by “——. (Any other
sequence described in Example 2 will produce the same result).

A C E A
P, Py ®, P2
1 I | |
1 % ;
b = AY d A - bY
AN J \ AN —
“ / -~ —
5 [ 7 8 9 10 U 0 1 2 3 4 5

{
i
i
i
¢
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5 3 4 3.1 2
15ll= 8 7 9 logll=16 4 5
2 12 12 77 7

P is strictly proper, (J|a;|| will be discussed in the next paper in this series).

Example 5. This is the “harmonic minor scal¢” in 12-tone equal temperament.
If P is an A harmonic minor scale, p, is the “sixth degree” of that scale.

A B8 < D E F G# A
Py Py Pg Pe PPy Py Py
| | | ! | |
o el | o
4 5 B ? 8 9 10 [+ 1 2 3 4
@ 1 2 t 2 2 i

@ 3 ® @ @ @ @

® @ 5 5 5 ® 5
lell=N8ll= 7 ® 7 ® ® 7 7
® ® O @

1 @ 11 10 11 10 10

12 12 12 12 12 12 12]

P is proper, but all encircled §; are ambiguous.

Example 6. This is a “Chinese Pentatonic™ scale tuned accoriding to 12-tone
equal temperament. If P={C,D,E,G,A}, p,=E.

302 3 2 2 201 2 1 1
5 5 5 4 5 4 4 4 3 4
8=, 8 7 7 7 7 layl=16 5 5 5 5
10 9 10 9 10 8 7 8 7 8
2 12 12 12 12 99 9 9 9

Example 7. This is a “Hungarian minor™ scale in 12-tone equal temperament,
If P={C,D,E® F* G,A® B}, p,=A® (the “sixth degree” of the scale). P is
improper. Hence the ranges and blurs shown in the diagram are those of the
minor triad on the “first degree” of the scale, to be discussed in Section 8. That
is, this triad={p;,ps,p;} (or {C,E® G}—these are marked by circles on the
diagram).
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c D E® ¥ gAY B C
PJ Pﬂ pS PB ?7 P'( P7 P]
¢ 1o el [
AN AR w4 AN 7
4 -] 6 7 8 1 10 n 4 1 2 3 4

3] 1 o3 1 1
®@ O @ ® @ 2] @
® @ ® 5 5 5 5
legll =119ll=} 7 771 © ® 7
[10] ©® O 8
1 [9] n i[9 n
2o o o1 o1 12 12

P is improper, all bracketed §; are contradictory. All encircled §; are ambigu-
ous.

7. Musical “Scales” and “Intervals”

In this application S will correspond to the set of pitches (with certain restricted
timbres—see Section 2) which may occur as stimuli. P is a subset of S which is
used to classify (measure) “musical intervals” (pairs) in P X §. Note that, in this
application (except when using S-proper modifications) we do not measure
intervals in S X S with those P C § containing no endpoint of the interval (see
last paragraph of Section 3). When we judge a musical interval to be “sharp” or
“flat”, we mean with respect to one of the constituent tones, usually the lower.
Similarly, when measuring a physical distance with a ruler, one of the markers of
the ruler is placed at an endpoint of this distance. This analogy may be useful in
interpreting much of the discussion which follows.

P may be intuitively interpreted as a musical “scale”, but in the sense of
“ruler”, not in that musical usage which implies tonality (root) or mode (in
French “echelle” not “gamme”). It may also sometimes be similarly interpreted
as a “chord”. In psychological terminology P corresponds to a “reference
frame”. How such reference frames are extracted from sequences of stimuli is
treated later.

Since P provides measures (classifications), distortions of perception of
ambiguous intervals may be expected. Alternatively, these intervals may be
perceived in terms of (i.e., measured as one greater or one less than) other
intervals which are not ambiguous but which have an endpoint in common with
the ambiguous interval in question (e.g. if P is the major scale, the tritone
(8, ,=6) may be perceived in terms of a perfect fifth (8, ;=7) or perfect fourth
(8,4=5) in the same column. Thus (except when a chord is being outlined) it
would be expected that skips from an endpoint of an ambiguous interval would
be avoided (as is actually the case with the tritone in the “major scale”). Thus an
ambiguous interval is one whose tones lack independence of adjacent tones in
the scale (see Example 8, which follows).

|
;
|
}
:
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Again, if P is considered a scale (in the sense of “ruler”), then “tonality” (in
its common musical usage) corresponds to that marker of the ruler from which
the measurements, f(p;x), are performed. But each column of |la;|| shows all
distances in P X P from such a common endpoint, p;. Then if tonality (the tonic)
never changes, even momentarily (as in modal sequences) we need consider the
array ||a,|| as containing only one column, j (; is the tonic), and obviously no
ambiguous distances can exist. Such is the case when an ostinato is used or when
(as in some Indian music) a drone is employed.”* However, when first one scale
element, then another is emphasized so that each temporarily appears to be a
“tonic” or “root” (as in modal sequences in the major scale), ambiguous
intervals can occur. So that such cases can be conveniently described, the term
“temporary tonic” will here refer to an element which temporarily assumes
prominence, so that (for that time period) it becomes, in effect, an endpoint of
all intervals measured. These may occur when motivically similar passages
beginning on different scale “degrees” (elements) succeed each other, when
harmony changes, or when different scale elements are rhythmically emphasized
in succession. Since, in musical usage, the “tonic” of a key of a scale is usually
considered fixed, the term “temporary tonic” is more nearly approximated by
the musical term “root” (although “root” usually refers only to principal tones in
“chords”). However, the composer Paul Hindemith’s well-known notion of
“degree progression” (both melodic and harmonic) [14] corresponds rather
closely to that of “sequence of temporary tonics”. When scales composed
primarily of intervals forming irrational frequency ratios are considered- (these
occur frequently in the Orient), Hindemith’s notion of “step progression”
resembles that of “sequence of temporary tonics”.

If the tonic of an improper scale is fixed, clearly neither ambiguous nor
contradictory intervals are evident. This reasoning can be extended: Again, to
all pairs appearing in column j of |la,ll, p; is a common endpoint Suppose
columns are eliminated from |lay|| so that T 20 for the remaining matrix. If the
endpomts corresponding to elmunated columns are not used as temporary tonics
in conjunction with the endpoints corresponding to the remaining columns,
contradictory intervals in the scale will not be exposed. (That is, measurements
from certain markers of the ruler are avoided so that contradictory measure-
ments do not occur.) Similarly, ambiguous intervals may be avoided by the
elimination of columns of [la;l|. Hence the exposure of contradictory or ambigu-
ous intervals can be avoided by either fixing the tonic of an improper scale or by
sharply restricting the use of temporary tonics. (Expected consequences of these
disturbances in perception are described in the section dealing with listener
experiments in a later paper in this series.)

Note that in music where harmony is of importance, a tone that forms
intervals with other tones in a scale of such a kind that it is reinforced by the
resulting difference tones and overtones is more easily used as a tonic or root
than tones for which such is not the case. Provided enough is known about the
timbre of the tones being considered to determine those intervals which produce

BThis can account for the phenomenon familiar to musicians that almest any pitches may be
played above an ostinato.
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strong difference tones reinforcing their roots, an examination of each column, j,
of any ||6;|| for the values of such intervals will show which p/’s are easily used
as tonics or roots.?* In such cases it is often convenient to think of the X
corresponding to such ||8,]| as an equal temperament system (although such

need not be the case).

Example 8. The following may be helpful in obtaining an intuitive impression
of the difference between ambiguous and unambiguous intervals; play the
following tones on a piano repeatedly with the tonic emphasized and Jor on
bottom of the sequence until the metal impression of the scale is firmly fixed:
E® F.G,A®, B®,C, D, E®; E is the tonic (although any tonic will do, E® makes it
the familiar major mode). Now play in sequence and listen carefully to: A*C.
This interval is unambiguous in this scale. Now repeat the entire procedure
using the scale: E,F*,G* A,B,C,D,E; E is the tonic (E is supported as the
tonic by difference tones with G* and B and serves to expose the interval,
E,G*). Now again play in sequence: G*,C (same as A®,C). (G¥ is momentarily
a “tonic” or “root” (in the sense of “being measured from™) when G*,C is
played). This interval is ambiguous in this scale (and many listeners will have the
impression that it is larger than when played after the first scale). Any attempt
to explain the effect as resulting from the augmented triad: E,G*,C will be
obviated by repeating the procedure with scale: C,D,E,F*,G*,A*,C, which
also contains the triad but in which the interval: G¥,C is not ambiguous.

8. Alternative and “Auxiliary” Tones, Improper “Scales”

Many attempts have been made to account for the predominance of the familiar
modes on the first degree (“major”) and the sixth degree (“minor”) of the
“major” scale (Example 1). All of these arguments rely upon harmonic consider-
ations. So also do arguments that justify the “seventh degree leading to the
tonic”, “the supertonic (second degree) leading to the mediant (third degree)”,
“the subdominant (fourth degree) leading to the mediant” and “the submediant
(sixth degree) leading to the dominant (fifth degree)”. Less successful have been
attempts to account for the variations on the minor mode (Examples 3 and 3).
Here we shall offer additional explanations consistent with the others, but which
do not so heavily rely upon harmonic considerations.

For a considerable period of time, many modes of the major scale (Example
1) were in use. Gradually notes were “altered” and added at special places in the
music so that many pitches not in the scale were occasionally present. These
pitches naturally were referred to certain pitches in the scale (“degrees” of the
scale), since the “reference frame” remained esentially the same. These added
pitches were in the ranges (R,) of those already in the scale (see Example 1) and

%In many cases such an investigation of difference tones and overtones will show overwhelm-
ing dominance of one tone. This tone will usually be a tonic and modes of the scale will rarely be
used when harmony is involved.
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each could substitute for some degree of the scale (as determined by R,). Some
such substitutions would change the key (scale) itself and cause a modulation,
Others would not. Also, pitches could be added without a substitution, in which
cases they functioned as “auxiliary tones” or “ornamental tones”. An examina-
tion of the R, for different k shows that if such tones are added at random
(double sharps and double flats included) the first, third, fifth and the sixth
degrees of the scale (ps,ps,p,.p;) would be most emphasized thereby. (Range is
appropriately used since these auxiliary tones were generally added one at a
time. The union of P and any upper or lower range is a proper modification—
see Section 4). Note that, of these, the first and third degrees (together) and the
first and fifth degrees (together) generate difference tones reinforcing the first -
degree. The sixth and third degrees generate a difference tone reinforcing the
sixth. No other such reinforcements occur. Thus it is not surprising that the first .
degree would receive most emphasis and the sixth next. most (the major and
minor mode).

Now consider the major mode. The first, third and fifth degrees, as has been
seen, reinforce the tonic. These degrees also form a strictly proper subset of the
major scale (Example 2-—the major triad), and hence may function as an
independent “reference frame”. Note that all the elements of the major scale are -
in the ranges (R,) of elements of this major triad. However, more than one
element of the major scale which is foreign to this major triad may be present at
one time (e.g. a tonic ninth chord). For this reason proper modifications (rather
than ranges) are appropriately used. Reference to Example 2 will show that all
tones of the major scale are also contained in a proper modification, R. Hence if
the tones of the major triad are considered as principal tones and the remaining
tones as auxiliary to those tones, p,, in whose R, they are contained, the
traditional rules for the “resolution” of one degree of the major scale to another
are derived. That is, by resolving each auxiliary tone to the principal tone in
whose R, it falls, we see that, (as is traditional) when a tonic triad is used the
leading tone (7th degree) leads to the tonic (Ist degree), the supertonic (2nd
degree), leads to the mediant (3rd degree), the subdominant (4th degree) leads to
the mediant, and the submediant (6th degree) leads to the dominant (5th
degree).

Clearly, when harmony changes in the use of the major scale, a different
proper (perhaps strictly proper) subset temporarily supplies principal tones and
the tendencies of the remaining tones can be determined as above. As we shall
see later, the proper and strictly proper subsets of the major and minor scales
together with the respective ranges (and R,) of each of their elements supply the
materials and rules of the traditional “figured bass™ system characteristic of -
Western music of the Baroque and Classical periods. ;

Now if we turn our attention to the minor mode of the major scale
(Example 1, still), the sixth degree becomes the first degree, and all other
elements assume degree names in cyclic order. Again if we select the minor triad
composed of the resulting first, third, and fifth degrees to supply principal tones
(Example 4) we will arrive at the same pattern of degree resolution as we did for

BNote that adding F* or B® might confuse the key, Not counting these strengthens the
argument.
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the major scale (which is in agreement with traditional theory and practice).

If we examine the R, in Example 1, we will observe that G¥ is in the range
of G and that F* is in the range of F. The substitution of G* for G results in
the “harmonic minor” scale (Example S), and the subsequent substitution of F*
for F (which remains valid) results in the “melodic minor” scale (Example 3).
(Substituting F* for F initially results only in another major scale). Note that (in
Example 1) G* is common to the R, corresponding to both G and A (since we
here consider 12 tone equal temperament, G* = AP). Hence it is not surprising
that we discover that a majority of the “intervals” in the harmonic minor scale
(which derives from a substitution of this tone only) are ambiguous, rendering it
unsuitable for use with temporarily changing tonics (temporary tonics). This is
not the case with the melodic minor scale, although it has many more ambigu-
ous intervals than the “natural” minor scale (the mode on the sixth degree of the
major scale). Thus we see that by substituting F* for F and/or G* for G we are
still within the ranges of elements of a single scale (reference frame), and the
common practice of using the melodic minor scale in ascending musical
passages and the natural minor scale in descending musical passages serves to
avoid the exposure of ambiguous intervals. In general, the interpretation of a
musical scale in terms of a set of ranges (R,) instead of a set of precise ptiches,
obviates all explanations for (and resulting confusions of) the common 18th
century practice of using any or all of the twelve tones of the chromatic scale
with a major or minor scale. Also, the practice in the Baroque period of ending a
composition in the minor scale with a major triad consists only of a valid
substitution for the third degree. This is true regardless of which version of the
minor scale is used.

Note that in the “Chinese pentatonic” scale (Example 6), both from the
viewpoint of reinforcement by different tones and ranges of tones, much
freedom of choice of tonic exists. This is consistent with musical experience.

In order to understand the application to improper scales, we will reverse
the argument used in interpreting the major scale. Suppose tones which are
contained in one of its proper modifications are added to the major scale and an
improper scale results. These added tones could then act as auxiliary tones to
those of the major scale in much the same way in which elements of the major
scale did for those of the major triad. Since the proper major scale would supply
principal tones from which all intervals could be measured, the impropriety of
the scale containing it would not, in this case, present a problem. Thus one
method for using an improper scale (other than those already discussed) is to
select a (strictly) proper subset (to act as principal tones) such that remaining
elements are contained within a proper modification of such a subset (and act as
auxiliary tones). The tendencies of such auxiliary tones would be determined by
the R, in which they are contained. The “Hungarian minor” scale (C, D, E®, F*,
G, A®, B) (Example 7) is easily interpreted in such fashion. Since the union of
the blur (R) and any lower range (R,—choose the underside of E®) is a proper
modification, we see that all tones of the scale are contained in a proper
modification of the minor triad (C, E®, G), and the customary “resolutions” of B
to C, D to E®, F* to G and A® to G result.?

271t should also be mentioned that ornamental tones may be added to an improper scale so that
a proper scale results. At present no examples where such is clearly the case have been studied.

3
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It is of interest to note that all tones of the 12-tone equal temperament
system are covered by the ranges of the elements of each of the scales and
chords in Examples 1-4. This is consistent with customary “chromatic” usage of
these materials in Western music. It has been mentioned that in Western music
(prior to the twentieth century), strictly proper and proper subsets of the major
and minor scales form the “figured bass” system of harmony. This system
determines, at each musical instant, the division of the elements of the scale into
principal and auxiliary tones (harmonic and non-harmonic tones). Thereby the
same tones may alternatively function (for given time periods) as principal and
auxiliary tones. (Such changes of function are usually accompanied by changes
of temporary tonic.) This is not the case when improper scales are used, where
the partition of scale elements into principal and dependent tones is far less
flexible.”” Both the inclusiveness of the ranges of the elements of each of the
proper subsets used and the compatibility of all the resulting temporary tonics
(to be discussed in the next paper in this series) must be considered. Alterna-
tively, the tonic may be fixed, thereby imposing greater restriction. Thus it is not
surprising that “heterophony” (and “homophony”) rather than “harmony” in
the Western sense characterizes the music of cultures using improper scales (e.g.,
Java and Bali).

Earlier, much was said of Helmholtz’s condition that “Every melodic
phrase, every chord, which can be executed at any pitch, can be also executed at
any other pitch in such a way that we immediately perceive the characteristic
marks of their similarity”. Clearly, we propose that proper scales have this
property because of the consistency of measurement they provide. Hence we
expect that “modal” melodic sequences in melodies would be immediately
recognizable as such when proper scales are used (provided that the measure-
ment of ambiguous intervals by intervals containing an adjacent endpoint is not
frustrated by the motivic structure of the sequence). We expect this to be less the
case when improper scales are used (except when the motif being sequenced
forms compatibly measured sets of intervals at each of its repetitions). Indeed, in
Western music, whereas motivic sequences characterize the use of the major,
minor, “whole tone” and “twelve tone” scales (all proper), such is rarely the case’
when the “Hungarian minor” or other improper “synthetic” scales are used, In
Java, where there are two systems of scales, “Slendro” and “Pelog”, all Slendro
scales thus far examined are strictly proper while all Pelog scales are improper..
We have observed that the ornamentation of melodies in the Slendro scales often
utilize motivic sequences, while this has not been observed in Pelog melodies.’
Mr. Surya Brata (B. Yzerdraat) of the Institute for Cultural Research, Musico-
logical Project, and the Music Department of the Ministry of Education and
Culture, Jakarta, was consulted, and confirmed these observations and com-
mented as well on the “hestiating” and “unstable” quality of Pelog compositions

Z"Note that while it is sometimes possible to select many different proper subsets of improper
scales, the continuous alternation between such subsets (as sets of principal tones) results in mmh
greater “reference frame” changes than when this is done with proper scales. This is likely because of ;
the greater weakness of the improper scale as a self-contained (independent of the tonic med)

“reference frame”. The reader can verify that changing harmonies which are proper subsets of an
improper scale (e.g., the “Hungarian minor” scale), when playing melodies in that scale, tends gs
produce the effect of a modulation.
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as opposed to Slendro. More will be said of this and of improper scales in the
following papers in this series.

Consider how much a given proper scale, P, may be “mistuned” and still
remain proper. If all elements of P are fixed and only p, is altered, clearly R,
limits this alteration. However, in any musical performance the tunings of al/ the
tones in a scale vary. S-proper modifications are appropriately interpreted as
providing limits on the simultaneous (or sequential) variation in tunings of all
the elements of a proper scale. That is, since no pairs (x,y) selected from
S-proper modifications are contradictory, any set of tunings of P which fall
within such a modification may be simultaneously entertained without affecting
the propriety of P. This is applicable only to proper sets when used with
changing temporary tonics and to the proper subsets of both proper and
improper scales when such function as reference frames. When S-proper modifi-
cations are applied to a proper subset of a scale they should not be simulta-
neously applied to the scale as a whole. For example, when C is the tonic of the
C-major scale (the C-major triad forms the principal tones), and when B is
moving to C, B may be raised. When B does not move to C, however, raising B
sounds distinctly “out of tune”. This is to be expected since no S-proper
modification of the C-major scale exists which contains a raised B, but many
S-proper modifications of the C-major triad contain a raised B. (All lower
half-modifications (see Section 5) of the C-major triad contain a raised B; no
half-modification of the C-major scale does, and since it is not strictly proper,
neither do any of its shifted half-modifications—see Section 6, Examples 1 and
2). Another interesting application is to the Javanese “Slendro” scales. These
contain five elements, are strictly proper, and are generally played on fixed pitch
instruments (such as xylophones). The class of all Slendro scales examined thus
far conforms to the limits imposed by R (on any member of the class) and each
vocal performance (studied thus far) of a particular Slendro tuning is limited by
an S-proper modification.

Other limitations of tuning will be subsequently discussed which apply both
to proper and improper scales (such as the “Hungarian minor” scale or the
Javanese “Pelog” scale). More stringent limitations frequently result when
improper scales are used.

We have not yet discussed why musical scales should be unequally divided.
Our discussion of improper scales has been cursory and we have not indicated
reasons why some scales exist in one or another musical culture and others
neither are to be found anywhere nor appear amenable to use as “synthetic
scales” (i.e., when experimentally constructed by composers). The next paper in
this series will deal with these questions after developing quantitative measures
by which scales may be evaluated with respect to the criteria discussed here as
well as new criteria pertinent to their “information carrying” capacity. “Ca-
dences” and related properties of Western music will also be discussed.
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9. Stability and Coverage prog
be s
4) o
At

This section is pertinent to developing measures of (a) the tendency of scales to]
change into other related scales during musical use and (b) the degree to whichs |
scale can accommodate the use of non-scale tones (see Part I, section 8) withou
losing its identity as a musical “reference frame.” Initially we make the observa-*
tion that the elimination of points from a proper set P (see Part 1, Sec. 3) may|
result in another set, P’, which is also proper. Methods can be derived for |
finding such expendable points. Of greater importance is the fact that the )
elimination of points from a proper set, P, with many ambiguous pairs in Px 7
may result in a proper set, P’, with few such ambiguous pairs. Since P i
interpreted as a reference frame which is used for classification, the scarcity of |
these ambiguous pairs is significant. When P is proper and periodic (with period
n and n=wn (see Part 1, Sec. 6) the proportion of ambiguous pairs in P X P
given by:' :

9.L

W=2card((zj))la,-j=(i2fai+Lk)/ﬁ(ﬁ*1): i=1,...,n=2;

and the quantity S=1— W is called the stability of P. (In Part 1, Sec. 6, Ex. |

7

the “major” scale, §=.9524). Explanation: there are ( 2)=21 two-elemen

subsets of the seven element set [C,D,...,B], and of these only one ({F,B)) - high
corresponds to an ambiguous interval; hence §=20/21=.9524.

Various alterations can transform a P with low stability to one with highe
stability, such as dropping points, adding points, and altering the positions of 4
points. The extent of change resulting from each such alteration is difficult ¢
evaluate. In most musical cultures, the cardinality of each of the scales used i, |
for the most part, fixed. In cultures using instruments with timbres in which §
harmonic partials predominate, certain iatervals (e.g. the perfect fifth) ofte
appear to resist alteration. However, it is convenient to conceive of a “gradien’
(G) between two distinct proper _scales (P, and P,) as the difference of thy
squares of their stabilities (S7 — S7) divided by the amount of alteration (to be
discussed) necessary to transform one inte the other. The stabilities are squared
(as an approximation) because a scale with §=.25 has less “tendency” to chang
to one with S,=.5 than a scale with §=_75 has to change to one with S=1, eve
though the amounts of alteration in both cases are the same. This is because it
difficult to use a proper musical scale with low stability as a proper scale (alsot
be discussed later). The amount of alteration in many cases may be taken a

T

card” indicates the number of elements in the set enclosed by “()”. The number of & equal
to elements of preceding rows is the same as the number a; which are equal to elements o
succeeding rows. Hence the factor of 2 in the above equation.
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proportional to the fraction of elements of P in a period (n) whose position must
be substantially changed (i.e. changed to a point not in any R) (see Part 1, Sec.
4) or which must be dropped or added in order to effect the transformation. If
A/n denotes this fraction, in such cases® let

51— 52

91. G(P,P)= —%\-/T~

Although crude, this notion of gradient indicates that two musical scales (P, and
P;) with equal stability will demonstrate different tendencies to decompose or be
otherwise altered when there exists another scale (P,) with respect to which one
possesses a high gradient and when there exists none such with respect to the
other. A few examples will indicate the significance of different values of G. The
tendency to replace tones of the 4 melodic minor scale (P,) by those of the
A natural minor scale (P,) (see Part 1, Sec. 6, examples 3 and 1) is indicated
by G(P,P)=1389. If P, =(CD, D* E F*,G,G* A%, B), (Y(P)=
1,1,2,1,1,2,1,1)) and P,=(C,D,E.F*,G¥,A%), (}(P)=(2,2,2.2,2.2)), three
points in P, are dropped and G (P, P;)= 1.313 which is of the same order of
magnitude as that of the previous example. The same value of G results when P,
is the twelve-tone scale (y(P)=(.L 1L, L1, L1L1, 1,1,1,1)). An illustration of a
high gradient may be constructed by adding a point between p, and p, of the
Chinese pentatonic scale of Example 6 so that for the resulting scale, Py,
W(P)=(1,2,2,3,2,2). Then, if P, is the Chinese pentatonic, S,=1, §,=.4667
and G(P,,P,)=3911. Also, if a tone is added to P, between P, and P to
produce a major scale (Example 1), an only slightly lower gradient will resuit.
Observe that, although P, and the major scale have been much used, it is
difficult to find examples using P,.

The concept of stability and gradient is pertinent to the tendency of a scale
to “disintegrate”. We next recall that, when musical scales are used together
with many auxiliary (ornamental) tones or alternative tones (substitutions), the
extent to which R (and R) cover S is significant. When P is proper and periodic
(with period n) and when S is finite within each cycle, the proportion of
coverage may be defined as the cardinality of R contained within a cycle
divided by the cardinality of S contained within a cycle. Let P be periodic, § be
continuous and a metric on S be given. Let R denote the upper bound of R,

Note, however, that if aff the elements of P, are altered, A=n and G(P,Py)=(5}-S5?),
which, in some cases, can approach one &5’ increases (when in the periodic case some (p;7;+ 1) are
ambiguous). It is possible to avoid this condition by making the denominator in (1) “4 f(n—A)
and/or by adding constant multipliers in the expression. However, other distortions would be
introduced. Since no cases will be encountered where an increase in § will result only when all
elements of P are altered, (1) should suffice for all practical musical applications.
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and Ek’ denote the lower bound. Then the coverage (C) of P is given by

2 (RE-R{)
k=1

C=

(Pn+ 1 Pl )
2 (87 +6,)
k=1
= when conditions in Part 1, Section 6 apply

(K and 8 are discussed in Part 1, Sec. 6)

Notice that scales in all examples given thus far except example 5 (the
harmonic minor scale), have a coverage of 1 (S is covered) when S is the 12-tone
equal temperament system. However, if § is the reals, these coverages decrease
differently in each example. (When § is continuous, coverage differences be-
tween scales tend to be of the same sign as their stability differences.) Most
examples in this paper are drawn from the familiar 12-tone equal temperament
system. Here a few proper scales with more than five elements and with high
stability exist (all of which are tabulated in Figure 1, Section 13) and most
familiar ones have R’s which cover S. Those proper sets with fewer than five
elements tend (to Western ears) to be heard as “chords”, that is subsets of
another P, and derive their stability from this latter proper set. Hence gradients
connecting chords are not significant and, because of the small number of
proper scales (in 12-tone equal temperament), gradient and coverage are of
minor significance relative to stability when evaluating these musical scales. (An
exception will be noted later) However, these measures assume greater signifi-
cance when scales using microtones are considered. In the application of this
model to the generation of new musical materials (the last papers in this series)
gradient and coverage are primary considerations.

Note that stability only applies to proper scales. Also, it does not really
measure the degree to which a motif at a given pitch of a scale may be identified
with (i.e., recognized as composed of the same intervals as) a “modal transposi-
tion” of that motif to another pitch in the scale (i.e., a sequence). To properly
accomplish this, we would have to consider each subset of the scale paired with
each of its modal transpositions and determine the fraction of these pairs, which
have corresponding component intervals with the same diatonic distances (i..,
)2 Note that such a measure would apply to improper scales as well, in the
sense of indicating the degree to which a motif may be followed by a modal
transposition of itself such that corresponding intervals have identical diatonic
distances. For reasons of computational economy we simplify the measure
suggested above to obtain a “measure” which, in the case of proper scales, in

*To be thorough, it would be necessary to weight stepwise intervals more than skips when the
former are more likely to occur in motifs. This would be required in the definition of stability as
well. However, for simplicity, we here avoid such refinements.
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practice is almost always ordered similarly to stability (assuming that the scales
are periodic) and which also applies to improper scales:

If P is thought of as a ruler, S gives the proportion of ambiguous measure-
ments under the assumption that all markers on the ruler will be used as edges
(endpoints) when measuring distances (the intervals in P X P). If we avoid using
certain markers as endpoints (eliminate all such measurements from those
points) all ambiguous and contradictory intervals may be avoided. Hence if the
remaining set of markers are used as endpoints, all resulting measurements (all
measurements from these endpoints) will be in an order consistent with the
initial ordering. Here we are interested in all sets of such measurements from
selected endpoints with such a consistent ordering.

For each element P there exists a set of intervals between that element and
each of the others in P. Since 8, =p,,,—p, and ||a;]|| preserves the order of ||5,|l,
the /™ column of |jay|| specifies the ordering of all the intervals (p,.p,), p, € P.
The row position, i, of each of such intervals specifies its diatonic distance, i.e.
iy, — p;)=i. (Note that diatonic distance corresponds to the “measurements”
referred to in the previous paragraph.) Hence the comparison of entries in two
different rows of ||a, | is in effect a comparison of the ordering of the measures
of two intervals with their initial ordering (Part 1, Sec. 2). Let the set of diatonic
distances corresponding to column j of fa,l| be called the endpoint set, M;. Then
row by row comparison of the entries in two columns of [l«,|| is equivalent to
the comparison of the ordering of the diatonic distances in two endpoint sets
with the initial ordering of the corresponding intervals.

Here we wish to eliminate selected endpoint sets from comparison with the
initial ordering. This is equivalent to deleting certain columns from |[/a;[|. When
P is not strictly proper, certain such deletions will result in the elimination of
ambiguous and contradictory intervals. In such a case the set of endpoint sets
which have nor been eliminated is called a consistent set and is specified by its
component endpoint sets, { M;,M,,...}. Thus {M, .M, ,....M, } is a consistent
set iff for all / and j=k,k,,....k,

inf(ai+ l,j) > Sup(%‘)-
J j

A consistent set which is a subset of no other consistent set is called a
maximum consistent set. All subsets of a consistent set are clearly consistent.*
(Examples: All the endpoint sets of a strictly proper set form a maximum
consistent set. In Example 1, (Part 1, Sec. 6) maximum consistent sets are:
{(My M, M M M M} and (M, M, M, M, M M;}.

For a given P let ¢, (P) equal the number of k-element consistent sets. Then
the consistency, C, of P is defined as

C= i (ck(P)/’(Z))/(nmI}
k=2

Note that (2) is the number of k-element consistent sets when P is strictly

“This is useful for computation—1o be discussed in a later paper in this series.




358 D. Rothenberg

proper. Hence C. like §, is a number between zero and one. (In Example 1, Sec.
6, C=.5556.)

In this section we introduce an additional concept because of its interest to
composers; i.e., the number of distinct values (i.e. a; or §,) assumed by each
collection of those intervals in P X P which all have the same diatonic distance.
Hence we define the variety, V,, of i as the number of distinct values assumed by
o, j=1,....n (i fixed), and we define the mean variety of P, V, as

n—1

V= > R/n—1.

i=1

(In Example 1, Sec. 6, V'=2)

10. Equivalence Classes of P

We now consider the question of when two musical scales are perceived as
“mistunings” of a single scale as opposed to when they are perceived as distinct
“different” scales. Of significance here is the fact that we do not assume a metric
which imparts “absolute” perceived sizes to musical intervals. Hence we form
equivalence classes of scales according to their initial ordering, which we do
assume. Additional musical interpretation appears in Section 13.

Since an infinite number of l18;}i may map into a single ||a], lla; Il will be
referred to (by an abuse of language) as the equivalence class for all such 19,1
As we have seen (Part I, Sec. 6) ||§,]| may be specified by its first row,

_ n{n—-1
Y(P)=(8, 1,8, 5...,8; ) lla,i| may be specified by K and the first (n=1)

elements of the first [—g} TOWS.

Example 9. ||5,(P))|l and ||§,(P,)|| are specified by their first row vectors,
Y(P) and {(P,). The remainders of reduced matrices 18;(P )]l and [|5;(P,)|| are
enclosed in brackets. Both belong to equivalence class itag;|| which is specified by

= . nn=1
K and 1its first

elements (Part 1, Sec. 6).

2 2 3 2 3 33 4 3 4
/4 5 5 5 5
vp) (7 7 8 7 7
9 10 10 9 10 13 14 14 13 14

pyo({ 6 T T 1 7
)"“(Pz) (10 10 11 10 10)
2
4

1 2]
4 4
K=9
(K=9 tells us that there are no ambiguous intervals since a,-j<1—<— /2 for all i
shown above.) _
Notice that the role of K in specifying lla;}i may be replaced by specifying
whether the interval corresponding to any max (a;) (where i and j range over the

n(n—1) 3 . . L
first ——— elements of the first [ g— j rows) 1s ambiguous or not. If it is, since

1 1
equivalence class = { 3 4

Fay i

2

L
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;g =K— o, K=2 max(a;); if it is not, K=2 max(e;)+ 1. Henceforth, let
an underhned max(a;;) denote ambiguity. (In exampie 9 above max(a;) = ay, (or
Q3 OT Qyy OT 0p5) =4 and K=20,+1=9).

. , n(n—1) e

Since the number of orderings of ——— terms is finite for any n, the
number of equivalence classes is finite for any fixed n. These equivalence classes
may be generated for any n and corresponding values of stability calculated; for
stability is an invariant of this equivalence relation.

Since we assume that the ordering of all elements of P X P is known but that
no metric is known, we may assume | o, is known but not [|§,]/.

We now consider the number of scales in a particular discrete § (e.g.
“temperament” system or subdivision of the octave into “cents’) which belong
to a particular equivalence class. Hence, when axioms (2.2) and (2.3) (Part 1,
Sec. 1) hold,” we consider the mappings of P into the integers, such that the
definitions of addition and subtraction (2.4) apply in their usual numerical
interpretation. Then obviously

j+i—1 ”
> 8, and K= 2§, (D)
k=j i=1

In this application, m=wK (Part 1, Sec. 6)° can be interpreted as an “equal
temperament” system, and each [|§,]| in equivalence class |la;|| would then
correspond to a “tuning” of a “scale” w1th reduced matrix |oy|. Here a method
will be shown which finds a canonical member [}8,]| of |a; || such that K is
minimal. This method can be generalized to find other i? il € llay i Also,
considerable economy results if an equivalence class, [la,|l 1s represented by a
member ||§, ||, which can be specified by its first row only (Part 1, Sec. 6). The
solution of the following problem provides a mapping from a given | a;]| to the
first row of a ||8,]| which will represent that ||a]|:

Find positive integers 8, j=1....,n, such that K is minimum where
n
k=338, (2)
j=
subject to the constraints
8,R8,, (8, is a positive integer) (3)

where R is a relation “=" or “>>” and is determined by the ordering of «; and
a,;. One such constraint exists for each pair i,j # k,! where i,j, k,/ range over the
n(n—1

, ) . . .
first ——2~— terms of the first [ i‘,ﬂ rows of |e,|l. An additional constraint

exists if K =2 max(a;) (to be discussed).

Techniques can also be developed for some cases where axioms (2.2) and (2.3) do not hold, but
these are not treated here.

®m is the number of “units” in an octave. {(In the 12-tone equal temperament system, m =(12)).
K is the number of “units” in a cycle. (For the scale...C,D,D¥ ,E.F* G,G¥ A* B.C,....K=4). w
is the number of cycles per octave. (For that scale w=3.)
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(3) may be rewritten:

j+i—1 I+ik—1 ’
2 8lxR 2 6ly (4)
x=j y={

Clearly, many of these constraints imply each other. All such redundant
constraints are eliminated. Two constraints which imply a third will yield the
third when added to each other (after cancellation of terms common to both
sides).”

Let 8= min(«;) and in general

J

B = mjjn {Slj[61j>.3k—1}

Let A, = f,, and in general
&=B— B

Then, obviously
k

Be= 2 A, (5)
=1

Each §,;= B, for some value of k; let k=f(/). Then

jo
8,= > A, (6)

y=1

Let G, be the number of §;,=p, and let k=the number of different
magnitudes of §,,. Then (2) becomes

K=CA+C A +M)+C (A +A+A)+--- +Co (A +- - +Ap).

Hence
3 3
k=2 |a 3¢
k=1 {=k
Applying (6), (4) may be rewritten
J+i=1 f(x) I+k—1 fO)
2 2AR Y XA (8)
x=45 y=1 y={ z=1

"Other quicker but less simple elimination techniques exist. Also note that when addition of
constraints produces contradictory constraints, the notation does not represent a valid equivalence
class when axioms (2.2) and (2.3) hold.

@ |

— e Y. e

e e e
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We have an integer linear programming problem: find positive integers A,
x=1,...,n such that K is minimum, subject to the constraints (8). If A, need not
) be an integer but is a real > 1, a solution can certainly be found. Note that all
terms on both sides of (8) are positive and that any A, may be multiplied by a

—

coefficient which is at most equal to i. Since i < { n-;l } (when K=2 max(a),

i< % ), an upper bound on the least common denominator of the A, can be

~computed and all the A, will be rational. But if a rational solution exists, so does
the integer solution obtained by multiplying by the least common denominator.
Hence an upper bound on K when all A are integers exists and a finite solution
to the problem can be obtained.

! In most cases where P is proper and # is small, which are of interest here, a

~ simple technique will supply a solution:

Example 10. Find the first row of the canonical |8, || €[ eyl where

1 2 3 5 4
6 8 9 10 7

llayll = —

10 (k=20)

E (a) 8,,0,2<8,3< 8, 5<8, 4=8,,<8,,<8,5<8, 4
The remaining constraints are
(b) 8,,>8,45 82>85 84=8
all others are implied by (a) and (b). Expanding (b):
(€ 8, +8,,>8, 5 8,+8;>68,5+8,,
81448, 5=8,+8,,+6,;
8=A; 3= A4y 8 5;=4,+4,+4y
8 4a=0+8,+A;+ A+ A
8, s=A+A,+A+4,
Substituting in (c)
20,48, > A+, + A+ A+ Ag;
28,4 48,) A > 28,+ A, + A+ A
200+, + A+ A +A=34+ 24, + 4,
A SA+HA A B> A Aj+2A,+A=4A,

Since all A, are positive integers, A, is minimum when A;=1, 4,=1, Ag=1 and
A,=4. So A, is minimum when A,=2. Then 8, ,=4, §,,=6, §, 3=7, 8,4=9,
8, 5=8,

KI/(P)=(4,6,7’9,8) and K=34‘
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Henceforth each equivalence class, [la;]l. will be represented by the first
row, y(P), of its member ||§;|| as specified above. Ambiguous intervals, stability, §

etc. are identical for all members of a given [ja]|.

Now, analagously to our consideration of proper modifications, we consider

all substitutions of x € § for p, € P which will leave the equivalence class of P
unaltered, and call this set the equivalence range (E-range or E,) of p,. Obvi- |
ously, E, C R,, and by reasoning similar to that for (Part 1, 4.3 and 4.6), the
determination of the extremes of x and y (where E,=[y,x]) satisfying the ]
following inequalities for all />0 is sufficient to determine E,:

(Pr-1X) <min{81j|(8y>8i,k—i)/\(j=iék - [)}
(xpk+i+l)>max{6.yl(81j<8i+l,k )/\(/#k)}
(py—ix)<min{xp; ;|8 >8,,_, }

(9Pe+) <min{8,[(8, > 8, )A(j#= k) }
(pk—z~ly)>max{6/j$(6/j<8i+l,k-uﬂl )/\(j?-"k—l)}
(Pes)<min{p, (V814 1> 84 }

The above inequalities, of course, need not be applied when

[(81/"8,'1()/\(_/'# k)]\/[(alj“"si,k—i)/\(j?&k— l)]

because in such cases x=y =p,.

In periodic cases where a metric is given by embedding P in the reals so that §
the definitions of addition and subtraction apply in their usual numerical
interpretation (axioms (2.2) and (2.3) apply), the following formulae may be !
used: Let E; =[p, — @, ,p, + @ ]. Then, after applying (9) wherever possible and |
making all column subscripts positive (mod n), we can set® ‘

[min{8,/(8,> 8, IAU#k=1)}] =84, 0<i<n0<i<n
@ =min 6,+Lk—[max{8b-](8”<6i+,)k)/\(jaék)}},O<i<n,O<1<n
1/2 mlj.n {(8”(_Sl,k*l)lalk>61,k'l}’ O<l<ﬂ,0<l<n

[min{8,[(8,>8,)A(#k)} | -8, 0<i<n 0<I<n
Sivik—ic1— [max{80§(5g< 8z+1,k—f~1)/\(j¢k“ 1)} ]s

@, =min

l/2miin (@t piemict= 8B s i —i= > 83}, 0<i<n, 0<i<m

8Actually, the two extreme points of E, as computed by these formulae should be eliminated }
from E,. "
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I | Note that when x > p, and x replaces p,, all 8, are reduced and all §, , _; are
/s increased. Since P is periodic, when §, is decreased so is 6, , _, and when §; , _;

is increased s0 is 8, ., ,. But when i=n,§,,_,,,= i x~0 1, =6;,_; Hence
T 8, is both decreased and increased and thus remains unaltered. For this reason
P ] i the9 last of the inequalities limiting both ¢ and ¢, i ranges only from I to
- n—1.

Given any (not necessarily canonical) ¢(P)€E||a,ll, by computing o and
gc for each £, if S is finite within a period, it is easy to see how all {(P)E|layl|
can be generated.

Just as previously the range was a union of proper modifications, the
E-range is a union of modifications (E-modifications) which preserve equiva-
lence class. The preceding formulae are easily adjusted to provide such E-modi-
fications in a stepwise manner. Also, if we now consider the preservation of
equivalence class when mapping from S X § to C, we obtain SE-modifications,
which occupy the same relation to E-modifications that S-proper modifications
had to proper modifications. While E-modifications apply to mistunings of
single elements of a scale without alteration of its equivalence class membership,
SE-modifications apply to such mistunings of more than one element (such as
occur within a vocal performance). Again, half-modifications may be utilized as
previously, and formulae for computation are easily obtained. Section 13
elaborates the musical applications.

11. Inverses, Descending Form
For any ¢(P)=(8, .....8, ,) and any k <n we define

‘{’k(P)=(8l‘(k+ l,)f'""al,n*al,l""ﬂal.k)

ie. the cyclic permutation of R beginning with &; . ).
We also define the inverse of R(P) as

l1{:(P)=(51,m~~~’51,x)

(The entries are in reverse order.)

If two P’s are so related that their /(P)’s are cyclic permutations or inverses
of each other, it is easy to see that their ambiguous intervals, stabilities and (if
axiom 2.2 applies) their coverages are identical.

The descending form of a particular $(P) is defined as the lexicographically
latest permutation of it. (E.g (2,2.2,1,2,2,1) is in descending form but
(2,2,1,2,2,2,1) is not.)

SE, is the set of all pitches which can replace p, jointly in all octaves {or, more generally,
periods) of P without changing its equivalence class. It is possible to define the ranges R,
analogously, i.e. as the set of all pitches g that can replace p, Jjointly in all periods so that
P—{p}U({q} is still proper. For the computation of such R,, { must range only from 1 ton—2in
the expression (8, — & «_,)/2 and its dual on 6.1 and 6.2 of Part 1. Also not all theorems about
range necessarily hold for this modified notion if n<3. Such a periodic definition of range is
appropriately used only when a substitution for p, occurs over all octaves and p does not
immediately recur in any octave. It is not relevant to the use of added (auxiliary) tones.

-
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For convenience, all elements p; of P will hereafter be subscripted so that
when Y(P) is in descending form,

‘P(P)E(‘Sl,l"sl.z’---’al,n)E[(Pnpz)’(ch)W-a(PnP1)] (11.1)

Henceforth 4% P) and ¢(P) (superscript omitted) will refer to the descend-
ing form. y%(P) and Y(P) will refer to the descending form of the inverse. (P)*
will refer to that member of an equivalence class which is used to represent it (K
is minimum), Y(P)* to its (normalized) inverse, and both will be descending
form.

For subsequent economy in the presentation of computed results, we note
that certain (P)* are their own inverses (that is Y(P)*=y(P)*) and that
stability, coverage, etc. are the same for these. (E.g. Y(P)*=(2,2,2,1,2,2,1)=
Y(P)*. The inverse of (2,2,2,1,2,2,1) is (1,2,2,1,2,2,2) which in descending
form is (2,2,2,1,2,2, 1) over again).

When axioms (2.2) and (2.3) do not hold, the definitions of inverse and
descending form still apply. The descending form of |ja,li (lla;{|*) is defined as  §
that cyclic permutation of the columns of |la;|| such that the resulting first row ¢
(@ 1,---,@; ) is latest in lexicographic order. The inverse of ay({|d,l) is defined E
as |\a;|| with the order of the columns reversed.

When different ||a |} (or ¢(P)) are in descending form they can be mechani-
cally compared for identity and can be listed in lexicographic order.

12. Keys, Modes, Tunings and Scales

To any equivalence class ||| (or /(P)*) there correspond many distinct sets, P.
Consider the cyclic case where the period length (pp;,,) is the same for all P. §
Suppose P €|la,ll. P'E|layll, PZP’ and xE(P N P’). It is possible that both |
(x€S)=(p,eP)=(p/€P’) and i#*;. (Note that elements of P and P’ have |
been indexed in accord with the descending form of (P )—see 11.1.) That is, if
S is sufficiently rich (as it is when axiom 2.2 holds), then for each element, x, of
§ and every value of / from 1 to n (the period) there exists a P €||a;]|| such that
x 1s the ith element of P (i.e., x=p,Ap, € P). For any i and x, all P € |lay]| for
which x=p, will be said to belong to key x of mode i of scale llell- For any i
and x there are at most as many members of a given key, mode and scale as
there are ||8,]| €||a,|| (depending upon the richness and symmetry of S). That is, 1
from a given S usually many distinct subsets, P, each with a different |{§[, may . §
usually be selected, all of which have identical key, mode, and scale member-
ships. Each such |§;]| will be called a funing of scale lla;l|. Thus any P is
uniquely specified by i, x, ||8;]| and ||a|| (where, of course, 118,11 € el

Given i and ||§,]|, any key can be simply generated by setting p, equal to a
particular element, x, of S and selecting remaining elements of P (provided such
exist in §) which conform to ||§,]l. In the periodic case this can be done in
clockwise order. According to our definition of addition, (2.4), (which is equiv-
alent to algebraic addition when axioms (2.2) and (2.3) hold), if we set PEX,




The Information Content of Pitch Structures 365

then p,, \=x+8, , p;,,=x+8 ;+8,,,,, and in general,

JHi—1
pisi=x+ 2 8&,k5x+8i.j‘
k=j

Note, therefore, that if P and P’ have identical ||§, ||, if P is key x of mode j
and P’ is key y of mode j+i, then if y=x+8§,, P=P’. Thus any P can be
uniquely specified by [{8,!| and that point, x €S, which corresponds to p, in P.
(Indexing is in accord with the descending form of §(P)*) Accordingly any
P €S will be denoted by P,(x) where x=p, and v is an index which ranges over
distinct ||8,]. (E.g., P,(x) and P,(y) are different keys of the same tuning and
P.(x) and P, (x) are the same key of different tunings and possibly different
scales). The mode of P is not shown by such notation.

In the musical interpretation the terms “mode”, “key”, “tuning” and “scale”
may be interpreted in terms of their customary musical usage (which, however,
is rarely unambiguous).

When axioms (2.2) and (2.3) apply and there exists at least one P €]{§,], the
number of distinct keys of a given ||8,|| (specified by its first row vector Y(P)) is
easily determined. Consider a P €||§,|| with period n. (The least n for which
there exists a K satisfying p, ., =p,+ ]J(.) Axiom (2.2) guarantees that if x,y €S
and x+§; is in §, 50 also is y + ;. Hence the number of distinct keys of ||§,]] is
equal to the number of points in a K~cycle (p,,p;, ,). Thus if S is the integers
modm (see Part 1, Section 6, m=wK and n=wn),'? there are m points in an m

cycle, and K= % = '—75—'1 is the number of such keys.

n

13. Distinct Scales and Mistunings

That there is only a finite number of equivalence classes of any cardinality is
musically significant in that only finitely many significantly differing musical
scales may be constructed. Also note that, if a scale is conceived of as an
ordering, the use of finer tunings and smaller intervals does not necessarily
produce new scales. It is then reasonable to suppose that a listener learns and
accepts some tuning of a particular equivalence class as correct, and perceives
subsequent deviations from such tuning as “out of tune” (rather than as
elements of new or different scales). Using twelve-tone equal temperament, no
two proper scales of cardinality > 5 exist which fall into the same equivalence
class. This may partially account for why, when producing non-diatonic music
on a piano, very few mistakes sound “out of tune” (although such may be heard
as dissonant or as “wrong notes” 1o a listener who knows the style or composi-
tion). However, when microtones are used (19, 22, 24, 31, 36, 48 and 53 equally
spaced tones per octave have been used at various times in Western music),

19Because of our computation methods, it is convenient to choose S as the integers modm
when axioms (2.2) and (2.3) apply.
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many scales may appear which fall into the same equivalence class. It would be
expected then, that the playing (several times) of some key of an unfamiliar scale
on a microtonal instrument immediately followed by the playing of a different
tuning (still within the same equivalence class, mode and key), would result in
the latter being perceived as “out of tune”. This should not occur when each of
the tunings used is in a different equivalence class.'!

In the early part of the century much experimentation in the use of
microtones was conducted with the hope of finding new musical scales. For the
most part this search was unsuccessful, and much resulted that is described by
both naive listeners and musicians as familiar materials which are “out of tune”.
The above methods offer an explanation of such responses when examined in
detail. The later papers in this series which deal with the development of new
musical resources rely heavily upon the use of the techniques derived here.

We have suggested that the tunings of a proper scale are restricted so that
propriety is preserved. Further restrictions are here imposed if equivalence class
membership is to be retained. (Of course, adjustments are made to accommo-
date limitations on pitch discrimination—to be discussed in the next paper of
this series). In the case of improper scales, such restrictions are the only bounds
on tuning discussed thus far.'? E-range clearly limits the mistuning of any single
element of a scale. However, when simultaneous variations in tunings of all the
elements of a scale are considered, SE-modifications are relevant. That is, any
set of tunings of P which fall within such a modification may be simultaneously
entertained without affecting equivalence class membership. Great demands for
precision may result. It will be subsequently shown that the readiness {(speed)
with which a particular P (that is, a particular key of a scale) can be identified (it
being assumed that the ordering of its pairs is already learned) depends upon
such precision. However, once identification has been made (and the principal
tones are determined—which in the case of improper scales rarely change) such
precision is no longer needed. It is then usually sufficient that all contradictory
and non-contradictory pairs in P X P retain their identities. In the case of proper
scales, S-proper modifications satisfy this condition. When P is improper, the
formulae for obtaining S-proper modifications can be trivially altered so that
modifications which preserve the identities of contradictory and non-contradic-
tory pairs are obtained.

It is interesting to note that according to B. Yserdraat (see Part 1, Section 8),
Gamelon (orchestra) leaders in Sunda (West Java) periodically retune the fixed
pitch instruments of the Gamelon to conform to (blend with) the changing tone
colors (timbres) of the principal gongs. (As the gongs age, their timbres stabilize
and this becomes less frequent. Note the suggestion here that the initial ordering
depends upon timbre). At such times there is occassionally an awareness that a
“new scale” has resulted. This theory suggests that this occurs when the retuning
has resulted in a scale belonging to a new equivalence class.

"Such an experiment can be performed by altering frequencies on a harpsichord or moving
frets on a guitar.

"*Those familiar limitations on tuning which derive from the necessity of preserving character- .
istic harmonic properties of specific intervals (such as the coincidences between the harmonics of
components of an interval or the relation of the beats and difference tones generated to such
components) are not discussed here. These have been extensively treated in literature on the subject
since Helmholtz.
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Fig. 1. Table of all proper |{8;|| when m=12.

All $(P) are in descending form. Inverses are not shown; e.g., the major triad
5,4,3 is not shown because its inverse 5,3,4 is; the dominant seventh 4,3,3,2 1s
not shown because 4,2,3,3 is, etc. The column headed “Efficiency” will be

explained later.

¥(P) Stability Ambiguities*? T Efficiency
615 6667 6 0 778
624 6667 6 0 7778
633 6667 6 0 1.0000
534 1.0000 —_ 2 6667
552 1.0000 —_ -2 6667
444 1.0000 — -4 3333
5142 6667 57 0 6250
5151 1.0000 — -1 5833
5232 5 5,7 0 8333
4233 1.0000 — 1 6250
4242 1.0000 — 2 5833
4323 1.0000 — 1 6667
4341 1.0000 — 1 6667
4413 5000 4,8 0 6875
422 5000 4,8 0 8125
3333 1.0000 — 3 2500
41322 6000 4,8,6 0 5800
a22n 4000 4,8.6 0 1.0000
32322 1.0000 — 1 .8000
33132 9000 6 0 6000
33222 9000 6 0 6400
33312 4000 3,6,9 0 6400
312222 7333 3,9,5.7 0 6278
312312 7333 3,9 0 4556
313122 6000 3,9,5,7 0 5889
313131 1.0000 — 1 A167
321222 5333 3,9,5,7 0 6333
321231 5333 3,9,5,7 0 6500
321312 5333 3,9,5,7 0 5611
322122 A667 3,9,5,7 0 778
22207 1.0000 — 2 1667
3121221 A762 3,9,4,8,6 0 6259
2221221 9524 6 0 7687
2222121 7143 4,8,6 0 6299
2222211 2857 2,10,4,8,6 0 6327
21212121 1.0000 — 1 3250
22112121 4643 2,10,4,8,5,7 0 6616
22112211 5714 2,10,4,8 0 4964
22121121 4286 2,10,4,8,5,7 ] 6750
211211211 1500 2,10,6 0 4683
212111211 3611 2,10,3,9,5,7,6 0 7262
2111121111 4667 2,10,3,9,4,8 0 6937
211121111 2667 2,10,3,9,4,8,5,7 o 8543
21111111111 1818 2,10,3,9,4,8,576 0 1.0000
H 1.0000 — 1 0833

"*The entries in the table are 8 for all ambiguous (p.p,). Hence each (p,p;) such
that 8; is an entry is ambiguous.

367
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Figure | lists all ||§,|| corresponding to proper sets when m=12 and S is the
integers mod 12. Notice that all Y(P) with less than five terms and stability
>2/3 (with the exception of ¥(P)=(5,1,5,1)!4 appear as “chords” in music
texts specifying standard “figured bass” notation. Chords with strong difference
tones reinforcing one element of the set are those which music texts tell us have
these elements as “roots”. More will be said of this later.

Since axiom (2.2) applies, instead of giving to T the values 0 and *1 only,
we can measure it quantitatively by T;=6,, -8, T=min7,. On this basis,
minimum tolerance would be maximal when (p,p;..)=(p;+p;,) for all i,jk
(equal division of the octave). It might be expected that existing proper scales
would have this property and/or be high in stability. The following discussion
explains why this is not the case, and introduces other factors relevant to the
evaluation of the proper sets in Figure 1.

14. Sufficient Sets; the Coding of P

We have hypothesized that when a listener is presented with a series of
unfamiliar tonal stimuli, he must mentally construct a reference frame, P, to
which all such stimuli are referred. Many proper P may satisfy this requirement.
If the stimuli are sufficiently unfamiliar (as when one listens to music of an alien
culture) many repeated hearings may be necessary during which a listener
replaces a familiar P with one more appropriate for classifying the stimuli heard.
The cardinality of the constructed P will depend upon the numbers of distinc-
tions required by the particular musical language or, if the stimuli are not
musical, upon the fineness of discrimination required by the recognition task to
be performed. However, most listening to music involves the identification of a
P whose corresponding ||§,]| has already been learned. This would necessitate
the identification of mode, key and tuning from a given subset of P (the
stimulus) when ||a;|| is known. However, a listener who has learned a “scale”
has learned not only an ||«;|| (an initial ordering) but a particular tuning (i|8,j[|)
as well. That is, given any “interval” (pair) in P, he is able to recognize the
possible positions its elements might occupy in P. In effect, given any pair (p;p)
he can mentally supply (interpolate) a possible set of remaining elements of P
which satisfy ||§;]l. Such an interpolation becomes unique after a sufficient
number of elements in P are heard. This is equivalent to the identification of x
(key) in a given P (x). If we accept the indexing on elements of P given by the

Scales with ¥(P)=(5,1,5,1) cannot be embedded in any major or minor key and are
“node-minimal sets” for keys of the scale (2,1,2,1,2,1,2,1,) which are not used in music of the
classical period. Node-minimal sets and their applications will be subsequently discussed. ¥{P)=
(5,1,4,2) is also sometimes omitted, but is occasionally used as an “altered seventh chord” and its
inverse is also used. E.G.

(2=

(an arrangement of “Laura,”
a popular song
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descending form of y(P) or by any of its cyclic permutations, the mode is, in
effect, also so determined in the sense that the listener is able to identify the
pitches heard as “degrees” of a particular key of a mode of ||§,{. In this fashion
the elements of P (within a period) may be coded into “scale degrees” as soon as
a sufficient number of elements of P have been heard.

Accordingly we define a sufficient set for P,(x,) as a subset, Q, of P.(x))
such that if x+ x,, Q is not a subset of P,(x); i.e., as a set of p, which is included
in one and only one key of P. Thus the major triad C E G is not a sufficient
subset of the C-major scale, for there are two other major scales (namely those
on F and G) in which the set {C E G} is included. But there is no other major
scale except that on C which contains the four notes G B D F, so the “dominant
seventh chord” is a sufficient subset of the C-major scale. A minimal set is a
sufficient set with no sufficient proper subset (‘proper’ of course in the sense of
set inclusion!); G B D F is not a minimal set, but G B F is; for there is no major
scale except that on C which contains G, B and F, while each of its proper
subsets {G B}, {G F) and {B F} is included in some other major scale (¢.g. G
major, F major and F* major respectively).

It is straightforward to verify that sufficient (and consequently minimal) sets
are invariants of equivalence, i.e., they depend only on the a, and not on the §,.
More precisely: if {p,-j,.,.,pik} is a sufficient (minimal) set for P={p;,....p,},
and if P'={p/,....p,} is equivalent to P (the p, and p; being arranged in
corresponding ~orders, e.g, both in descending order), then {p;.....p} is
sufficient (resp. minimal) for P’ ’

15. Efficiency

Consider a language whose alphabet consists of # letters (phonemes). How many
distinct n letter words can be formed using this alphabet? Of course, certain
restrictions exist which limit the sequences of letters which can occur (e.g. no
more than two consonants in a row). The more distinct words that can be
formed whose length is less than or equal to some maximal », the more efficient
the alphabet may be said to be.

A similar situation applies when “words” are formed from sequences of
intervals. Since interval sequences are formed from tone sequences (although not
in a linear fashion) we consider sequences of the elements of some P. Also, since
no new intervals are formed when an element is repeated, only non-repeating
sequences will be considered. Since we are here concerned only with properties
deriving from the structure of P, we will use the following criterion for the
termination of a “word” (other criteria apply when “motifs”, etc., are consid-
ered): When all remaining elements of P are determined by a sequence of some
of its elements, the addition of elements will impart no further information of
this type, and the “word” will be considered as terminated. That is, any
sequence will be considered as complete as soon as a sufficient set occurs in that
sequence, i.c., as soon as we know what key we are in. We now ask, given a
particular | e, how many distinct “words” can be formed using k elements
where k varies from I to n. Again, we consider the “alphabet” formed by |fa; |
as more efficient when a greater number of words can be formed of length k&
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(averaged over all values of k). With this purpose the following definitions are
made:

Consider all non-repeating sequences of 7 points'® in P (there are n! such
sequences). Let 5, be the number of elements in each such sequence which must

appear before a sufficient set is encountered. Then F(P) is defined as the
average,

)

i=1

F(P) may be interpreted as the average number of elements in a non-
repeating sequence of the n elements of P,(x) required to uniquely determine
the key, x. ‘

Efficiency, E, is defined as F(P)/n and redundancy, R, as 1— F(P)/n (both
numbers lie between zero and one).'®

[t should be noted that this kind of “efficiency” and “redundancy” differs
intrinsically from the meanings these terms assume in information theory
applications. The distinction is important and applies to alphabets in spoken
natural languages as well as to musical “scales”. The “redundancy” of informa-
tion theory refers to a redundancy in the “message”, not in the “code” (alpha-
bet). In the discussion here, that property of the code which determines whether
efficient (or redundant) messages can be constructed (if such are desired) is
considered. This property is inherent in the code itself, and does not apply to the
“message”. Much confusion has resulted from the application of standard

“statistical “redundancy” measures to musical “messages” without considering
the limitations introduced by the efficiency of the code being used.

Let us now classify scales according to their values of stability and effi-
ciency. A crude classification would be:

Scale Type Stability  Efficiency

(a) proper high high
(b) proper high low
(c) proper low high
(d) proper low low
{e) improper — high

(f) improper - low

i

Notice that in Figure I all scales in 12-tone equal temperament with which
we are most familiar (the major, minor, Chinese Pentatonic) are relatively high
in both stability and efficiency. (In fact, the major scale (of which the “natural
minor” is a mode) has far higher stability and efficiency than any other

"*7 is the number of pitches per octave—e.g. =7 for the major scale.
"*Methods exist for generating minimal sets directly and for computing efficiency without

finding minimal sets. Generators for proper and strictly proper sets also exist. These will be set forth
in the fourth paper in this series.
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seven-tone scale shown).Next among seven-tone scales is the “melodic minor”
(2,2,2,2,1,2,1). The “Chinese pentatonic™ (3,2,3,2,2) stands out among scales
of 5 and 6 tones. The use of any temperament system (other than 12-tone equal
temperament—see the tables in the fourth paper in this series) which approxi-
mates the perfect fifth does not alter these results for the major and pentatonic
scales. Here situation (a) above applies and its desirability is exemplified.

However, situation (b) applies to many scales with which we are familiar,
such as the “whole-tone scale” or 12-tone scale”. Note that when these are
strictly proper scales, from the hearing of a sufficient set (any element) alone, it
is not possible to code the elements of P into scale “degrees”. That is, although
PX P is coded by the proper mapping, there is no way to index elements of P
except by arbitrary choice. Thus, since in these cases intervals (pairs) are coded
but tones are not, composition with these scales must involve relations which make
use of motivic similarities rather than relations between scale degrees. Hence the
tone row basis of 12-tone music (which is essentially motivic in concept) is not
surprising. An examination of Debussy’s whole-tone piano prelude “Voiles™
shows similar motivic dependency.

Now consider improper scales. P X P is not coded except by the employ-
ment of proper subsets or a fixed tonic (which, in effect, codes P into scale
degrees). Hence information is primarily communicated by the scale degrees. Thus
it is important that P be coded as quickly as possible, which is indicated by a
high redundancy (low efficiency) as in case (f). It would be expected then that
scales characterized by case (e) would be extremely difficult to use, except when
the tonic is fixed by a drone or similar device and, in fact, we have not
discovered such scales in any musical culture examined thus far. In general, the
use of motivic sequences on different scale degrees of improper scales would not
be expected (except within proper subsets of such scales). This is strongly
supported by examination of Indian and other music using improper scales.
However, it should be noted that the use of motivic sequences on different scale
degrees of improper scales is possible when these sequences occur on mutually
compatible degrees of the scale (i.e., as described in discussion of “consistent
sets”—such sequences avoid the exposure of contradictory and ambiguous
intervals).

We would also expect that proper scales characterized by low stability
would tend to be used as improper scales, so that case (c) would resemble (e)
and (d) resemble (f) and similar remarks apply.

Note that most musical “cadences” (in Western music) have the following
characteristics: (a) a minimal set is contained in the cadence; (b) the tonic
appears together with at least one other tone which forms a difference tone
reinforcing the tonic; (c) each chord in the cadence progression is a stable

(§ >§) subset of the scale (or a subset of such a stable subset)'” which is distinct
from the stable subset (or subset of such a stable subset) formed by the
succeeding chord. Condition (a) serves to uniquely determine key, (b) to fix the

tonic, and (c) to present as many distinct stable subsets (“color changes”) of the
scale as possible.’® The IV-V-1 cadence and V.,-I cadence satisfies these

17Note that a subset of a stable set is not necessarily stable.
18Condition (c), although characteristic of all pre-twentieth-century cadences, is not a necessary
condition for a cadence. However, it also applies to nearly all twentieth-century “cadences”.
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conditions. (The use of a dominant seventh chord in the VI progression
provides a tone without which condition (a) would not be satisfied). The IV-I
(plagal) and the V-I (not V,-I) cadence fail to satisfy condition (a) and are used
only when key has been previously established. Note that the “resolution” of an
ambiguous interval to an unambiguous interval emphasizes the cadential effect.
This is satisfied by the VI progression ((F,B)-+(E,C)). Similar conditions are
satisfied by non-diatonic cadences (to be discussed later).
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A Model for Pattern Perception with Musical Applications*
Part I1I: The Graph Embedding of Pitch Structures

David Rothenberg

Department of Computer and Information Sciences, Speakman Hall, Temple University,
Philadeiphia, Pennsylvania 19122

Abstract. This is the third paper of a series which begins by treating the
perception of pitch relations in musical contexts and the perception of
timbre and speech. The preceding papers dealt with those properties of
musical scales which allow them to function as reference frames which
provide both for the measurement of intervals and for the identification of
their elements as scale degrees. The effect of these properties upon the
perceptibility of various musical relations and properties has been discussed.
Here we extend the treatment to systems of different scales (as exist in many
musical cultures) where a listener’s recognition of any one scale in the
system interacts with his ability to recognize the others. Reading of the two
previous papers is required.

16. The Directed Graph, G

Thus far we have assumed that a listener has learned only one scale (measuring
set) and will classify (measure intervals in) any stimulus (set of pitches) by
embedding it in a key of this scale. Now we will consider the classification of
stimuli by a listener who has learned many scales (e.g. a sophisticated Western
listener or an Indian familiar with the enormous number of distinct “ragas” in
use). That is, we have dealt with the problem of determining x in P, (x) (Part 2,
Sec. 14), given a set of points which is a subset of some P, (x). Now we consider
the problem of determining both v and x in P,(x) when the given points may be
a subset of any of several given P (x), v=0v,,0,....

Note that P,(x) may be a subset of P,(y), u#v, where x may or may not
equal y. Indeed, if we denote by P,(0) that P,(x) corresponding to all the points

*This research was supported in part by grants and contracts AF-AFOSR 881-65, AF
49(638)-1738 and AF-AFOSR 68-1596.

0025/5661/78 /0012-0073$5.80
©1978 Springer-Verlag New York Inc.
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74 D. Rothenberg

of S, then for all v,x, P,(x)C P(0). That is, the partial orderings of all P, (x) by
means of set inclusion, define a directed graph, G, in which connection indicates
set inclusion. This graph consists of a Hasse diagram with = P(0) at the top.

Example 11. Let m=12, ¥(0)=(4,2,4,2), ¥(R)=2,1.1,2,1,L2,1,1), Q
P (0), R= P_(0) where 0 corresponds to C.

&Y

ThER—

Jeoro®

For what x,y is P,(x) (the chord Q transposed to begin on the xth note, ]
counting C as the Oth note) included in P, (y) (the scale R transposed to begin
on the yth note)?

Q has 2-fold symmetry so we need only consider x=0,1,2,3,4,5; P, (6)=
P,(0) etc.

R has 3-fold symmetry so we need only consider y=0,1,2,3; P,(4)=P,(0)
etc.

Then

P,(0)C P,(0), P,(2)

P (1)CP,(1).P,(3)

P,(2)C P.(0). P.(2)

P,(3)cP.(1).P.(3)

P (4)CP.(0).P.(2)

P(5)c P, (1). P.(3)

If a line connecting 4 on the lower line to 0 on the upper line indicates that
P,(4)C P,(0), the above may be displayed as follows:

Figure 2 is a chart specifying the graph of all proper sets with stability
>2/3 (where S is the integers and m=12). In the digital computer program
which computed these results, the first point of § was called s, and hence
s, =s,,. (For musical interpretation, so=C, 5,=C* or D° s,=D,... etc) The
chart is read as follows: All sets are listed according to the descending form
Y(P); inverse sets are adjacent and indicated by brackets; each entry, y,
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76 D. Rothenberg

indicates that P, (y)C P.(0) where u is indicated by the row label and v by the
column label. Note that because the periodic case is used, P,(y)C P_(0) implies
that for all k, P,(y+ k)C P,(k) where the arguments of P, and P, are reduced
modulo the periods of the respective scales. ;
An example of a diagram displaying a small portion of the above graph is:

Y(P(x))=(1, LLLLLLLLLLL), z{/(P3(x))=(2,I,2,l,2,l,2,l);
Y(P3(x))=3.3,1,3.2; ¢(P2;(X))=(4,2»3,3)2 ¢(P3:(x))=(5,3,4).

P () (o)
3 «_\3 J v ) ‘) A

! PlB( ) T3 () () (8) ¢

' Pu( ) ) €
Py( ) artss m w G () @
Fig. 3.

B% To draw a diagram displaying the entire chart would be cumbersome;

b hence, for convenience, a node on the diagram on the following page (Figure 4)

i will represent a collection of sets, {P(x), x=0,1,...}, for all permissible values

of x (all keys of scale P,(x)). The numbers along the vertical connecting lines
between nodes indicate those values of x for which P, (x)C P,(0) (P, (x) appears.
below P,(x)). Since P,(y +k)C P (k) there is no loss of information in this new

5 representation. Inverses are indicated by dotted horizontal lines with arrowheads
p® at each end. Only sets of cardinality five and greater are shown in this diagram.:
¢

B 17. Graph Equivalence'

-t Note that all subsets of S (including those not on graph G) are subsets of at

least one set on graph G.2 Henceforth let a point of graph G be denoted by’
“P_(x)", and let subsets of S which may or may not be on the graph be denoted
by H. Then, given H one can determine all v and y for which H C P (»).

e A L . . . o -

To each H let there correspond a set:

V(H)={P.(»)IHCP,(»)}

Two sets, H, and H, will be called graph equivalent iff V(H\)=V(H).
To each H let there correspond a number

[(H)=M—card(V (H))

where M is the total number of points on graph G.

IThe following discussion applies to the directed graph, G, not to any of its abbreviated
versions (as in Figure 3 and 4).
2§ = P,(0) is assumed to be on graph G (see above).
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| ¢(P3(X))=(2a152s172’192’1) ¢(P,0(x))=(2,2,2,2,2,2) ‘
1 HA)=022212) V(P())=(G,13,1,3.1) "
Y] wP)=2221.221) ¥(Pa(x))=(3,3.2.2.2) |
4/(P6(X))=(3, 1,2,391,2) ¢(P13(x))=(3,3317392) [
PN =(,2,1,3.2.1) Y(Piex)=6.3.2.5, 1)

Y(Ps(x)=(3,2,3,2,2)
Fig. 4.

1(H) will be called the information value of H with respect to graph G. It is
equal to the number of points on graph G to which H does not belong.

Evidently 7 (H) is invariant under musical transposition of H in the above
examples. This is because G is complete in the sense that P,(y)EG—>P,(y)EG
ed for all v,y,y".

Intuitively, information values count those points of graph G which need not
be considered when classifying a given subset H of points in S. If all points of
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graph G (with the possible exception of P,(0)= S)? are interpreted as learned
“mental reference frames”, any of which may be used by a listener to measure
(classify) the intervals of a “signal” or “stimulus” consisting of a string of
musical tones,? then the information value I (H), corresponds to the number of
such “reference frames” which are eliminated as possibilities for classifying a
“signal” when that portion of the “signal” specified by H has been heard.

Similarly, graph equivalent sets may be interpreted as different stimuli that
can be classified by identical subsets of those “reference frames” which are
known to a listener {clearly, graph G contains only those “reference frames”
which are known to the listener, P (Bh=S excepwd).5

18. Graph-Sufficient Sets, Graph and Node-Efficiency

A graph-sufficient set for graph point P,(y,) is defined as a subset H of P.(y))
such that

HCP,(2)=P,(y)CP.(2) o

i.e.. hearing H tells us we are in P,(y,) or above it; the only scales (chords) on
the graph which contain H are P,(y,) and its superscales (superchords).

A node-sufficient set for a graph point P,(y,) is a subset H of P.(y,) such
that

HCP()=P,()CP(2) or P()CP(0) @ |

Note that (2) differs from (1) only in that it permits H to be a subset of
some P, (z) below P,(y,). A node-sufficient set distinguishes a particular graph
point from all graph points incomparable with it.® A set can be graph-sufficient
for only one graph point but it can be node-sufficient for several. (E.g., all sets
are node-sufficient for P(0)=S).

Example 12. Let H, be a subset of exactly those P (x) on the graph shown
below which are blackened and let H, be a subset of exactly those which are

3When P,(0) does not represent a learned classifier and [ (H)=M —1 (i.e., H is a subset of no
P_(y) other than §), the intervals in H will likely be heard as “mistunings” of elements of some
P, () whose selection from the other graph points will probably depend upon preceding stimuli (see
previous discussion of tuning).

4This “stimulus” may consist of musical tones simultaneously heard as well as in sequence,
provided that these tones are clearly distinguished.

5P,(1)= S is always included in graph G for convenience, since all graph points are connected
to it and since its uniqueness causes it to have no effect on the relative values of different J(H).

Here and henceforth “incomparable” means “with respect to inclusion”.

; saj
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The Graph Embedding of Pitch Structures 9

surrounded by a circle:

For the above graph (which is not related to the graph of Figure 2) H is
node-sufficient for exactly Py(l), Pi(1), Py(1), Py(1) and P,(1), and it is not
graph-sufficient for anything. H is graph-sufficient for exactly Py(2) and is
node-sufficient for exactly Ps(2), P4(2), P(1) and P (1).

Note that if all P,{y) are eliminated from graph G except those which are
transpositions of one particular P and their subsets and supersets, those H’s
which are node-sufficient for each such transposition are sufficient sets as
defined in part II, Sec. 14. These will henceforth be called key-sufficient sets.

A listener’s habits may be such that he will classify a stimulus by the lowest
graph point possible (i.e., when 7 (the number of scale tones per octave) is
minimal); e.g., 2 Western musician listening to classical music would most likely
hear a set of tones belonging to a key of a major scale as a subset of such a key
although these same tones are also a subset of the twelve-tone chromatic scale.
In such a case his classifications will depend upon the graph-sufficient sets in the
stimulus. However, the same listener may sometimes classify a stimulus by graph
point which is not the lowest possible point on the graph. E.g., the same Western
musician would hear a set of tones belonging to keys of both a major and a
pentatonic scale as a subset of the key of the major (unless nothing but keys of
the pentatonic had been heard in the composition for a long stretch of time). In
this case his classification will be according to a node-sufficient (rather than
graph-sufficient)’ set. More will be said of this later.

Also of interest are sets which are subsets of at least one transposition of a
particular P and of no point on graph G incomparable with all transpositions of
P. These determine v in P.{y), but need not uniquely fix y and are called

"Note that a node-sufficient set has lower information value than a graph-sufficient set for the
same point.
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scale-sufficient for y(P). Scale-sufficient sets are applicable to Indian music
where any of a large number of scales (the tones in the “Ragas™) may be used,
but only one mode of each key (that whose tonic coincides with the drone) is
used. In the “Alap” portion of an Indian classical performance, scale-sufficient
sets are often avoided for a considerable period of time so that the resolution of
doubt as to the identity of the “Raga” used assumes dramatic significance.

Graph, node and scale-minimal sets are defined (as previously) as sufficient
sets of the same type, no proper subset of which satisfies the identical sufficiency
condition.

The definitions of graph efficiency, £, and node efficiency, E¥, for a graph
point P (x), are similar to the definition of efficiency (cf. part II, Sec. 15) except
that the number of graph or node-sufficient sets for P, (x) appears in the
numerator in place of the number of key-sufficient sets. When G is complete (i.¢.,
close;vd ;mder transposition) E ¢ is the same for all transpositions of a given P (as
is E7).

19. A Sample Graph

In the graph specified by Figure 2, Section 16, § is the integers, m= 12, all P (x)
with stability >2/3 are on the graph. Figure 5 (below) shows the containment
pattern of all 3, 4 and 5 element subsets H of § in those of these graph points
with more than six elements or with six elements and a stability of 1. These are
familiar to contemporary Western musicians; other points on the graph of figure
2 are subsets of at least one of these and are customarily used as “chords” rather
than “scales” in Western music. Hence, were P,(x) eliminated from considera-
tion, all subsets of only one of the remaining selected graph points® would be
node-sufficient'® for that point. P, is relatively low in stability and has a high
gradient with respect to the whole-tone scale (P,y), the twelve-tone scale (P))
and also P,,. Hence P, is easily perceived in terms of other (proper) scales. In
deference to the contemporary composer, Olivier Messiaen who consciously uses
P,'! it is reluctantly included in Figure 5. All node-sufficient sets are underlined
including those which are node-sufficient only if no P,(x) is considered (e.g.
6141). Other underlinings are only of graph-sufficient sets for P,(0) or some
P,(x). (It is assumed that listeners will classify node-sufficient sets for £,(0) or
some P,(x) by some lower graph point e.g. some P,(x) of P,(x)).

Each row corresponds to an H,(0) whose ¢(H (0)) is shown in the leftmost
column. The headings of columns 2-7 specify Y(P) corresponding to Py(x),

$When G is complete £¢ and E¥ may be computed without finding corresponding sufficient
sets (which in this case, can be easily extracted). See subsequent computation paper.

9None of which is now contained in another.

1But not necessarily graph-sufficient (e.g., P, 4(0) (see Figure 2), for which y(P)=(5,1,5.1), is
graph-sufficient for itself, but not for P3(0) (y(P3)=(2,1,2,1,2,1,2, 1)}, for which it is node-sufficient.

UIn his book, “The Technique of My Musical Language” [15], he lists Py(x) as one of his
“modes of limited transposition”. It is not clear, however, that it is heard as a “scale” as defined here
(i.e,, a “mental reference frame™).




Py(x). Py(x), Ps(x), P,(x) and P,i(x) respectively. P,(0) is not shown since all
H (x) are subsets of it. Each table entry, y, indicates that H, (0)C P (y) where u
is determined by the row label and ¢ by the column label. (Note that H,(0)C
P(y)y=H, (z)C P(y+z) with appropriate reductions of z and y +z). The num-
ber in the rightmost column is the total number of entries in all columns except
that corresponding to P,(x). These numbers roughly correspond inversely to
information values.
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Fig. . (cont’d.)

Hlustration of the Use of the Table. Let it be required to find those “scales”
(=transpositions of P~ Ps and P,,—P,;) of which (1) {C,F¥ B} and (2)
{B,D,F¥,G} are subsets.

Ad (1). The y(P) for CF* B is 651. Since this is lexicographically later than
its cyclic permutations 516 and 165, it’s already in descending form, and we look
for the row (row 11) of the table which has 651 standing in its leftmost column.
(Entries in this column are arranged in order of length, and in reverse lexico-
graphic order between entries of the same length.) Then (reading row 11 from
left to right)

{C,F#,B} C P, (0), P;(0), P,(0) and P, (0)

i.e., it is included in Messiaen’s mode P, starting on C:

P, (“string of pearls™) starting on C:

J e.

P, starting on C (a cyclic permutation of A melodic minor):

iw;__a———_

83
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P, starting on C (C Lydian, a cyclic permutation of G major):

0

s

I ©

and trivially P, (one chromatic scale, omitted from the table because everything §
1s included in it).

The number 3 written in the rightmost column of line 11 of the table
indicates that there are 3 possible P,(x) in which {C F* B} is included (not
counting the trivial P,’s and the dubious P,’s). If there is only one such P, (x) (as
in rows 5331 and 61221 of the table) then H is node-minimal for that one (if 7,
is excluded from the graph); if there are more {as in rows 53211 and 61311) it is
node-minimal for P, (“atonal” in a precise sense): in either case the row is
underlined. The numbers in the right-hand column roughly correspond inversely
to information values.

Ad (2). The y(P) for BD F* G is 3 4 1 4, Its descending form is 4 3 4 |
which we find in its place in column | of the table. This corresponds to the
position G B D F*, so 0=G. Reading the entries opposite 4 3 4 1 from left to
right, we see:

Under P,, 0 and 1, i.e., Messiaen’s mode on G or A

Under P, 0 and 5, ie., the Lydian mode on G=0 or C=5 (=D and G
major respectively).

Under P, (a symmetric mode unknown to Messiaen) 0, 1e., P;, on G

A 4 *9!

On the table below the first two entries are graph efficiencies'? for P,(0) and
any P,(x); the rest are node efficiencies for any Py(x), P(x), P(x), P, (x) and
P o(x). (¢ P)’s are shown on the left):

if all P,(x) are

Y(P) if all P,(x) are on graph excluded from graph
(LLLLLLLLLLLD 5517 4646
ELL2.nLL2nh 6190 —
(2.1.2,1,2,1,2.1) 7464 6786
(2.2,2,2,1.2. 1) 9592 8844
2,2,2,1,2,2. 9524 9143
(3.1,3, 1.3, 1) .8000 .8000
(2,2,2.2.2,2) 1.0000 1.0000

If we consider a graph that consists only of P,(0) and all points whose Y(P)
corresponds to the “major scale” (2,2,2,1,2,2,1} and to the “melodic minor

’Note that a graph-sufficient set for P,{y) cannot be classified by subsets of P,(y). Hence
graph efficiencies are used instead of node efficiencies for P£,(0) and all Py(x).
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scale™ (2,2,2,2,1,2,1), node efficiencies are as follows:

(22,2.2,1,2,1)  .7932
(2.2,2,1,2,2,1) 9143

Note that J(P) which are low in efficiency (computed using key-sufficient
sets—see Figure 2) may be high in graph or node efficiency. Hence scales which
! may be too redundant (Part II, Section 15) to be greatly used in diatonic music

(e, (2,2,2,2,2,2), (2,1,2,1,2,1,2,1)) may be extensively used in music which
freely makes use of all twelve tones and their subsets. Examples can be found in
Ravel, Stravinsky, Frank Martin, Bartok, etc. (Ravel mixes the “whole tone
scale” with the “major” and “minor” scales; Stravinsky’s first movement of the
“Symphony of Psalms” uses (2,1,2,1,2,1,2,1) extensively, etc.)

Observe that among the H (x) with three elements (iriads), those whose
Y(P) are (10,1,1), (8,3,1), (6,5, 1) have the highest information values. The
frequency of use of such triads in twentieth century music is well documented;
hence “minjor” chords and chords in fourths. A particularly startling example is
Anton Webern’s “Piano Variations” (Opus 27). The entire composition consists
of a succession of graph-sufficient sets for the “twelve tone scale”
(LL,1L,LLELL 1,11, although the “serial” technique of composition does
not guarantee this."”

I we retain the notion that a “cadence” must uniquely determine key and
tonality (Section 15 at the end), and add that it must also determine scale,
“cadences” for “non-diatonic” music (i.e., using keys of all scales on the graph)
can be constructed. Here a sample cadence for P,(0)=C,D,E,F*,G* A,B
(W(P)=(2,2,2,2,1,2, 1)), when E is the tonic, will be constructed. Notice (from
Figure 5) that {C,E,F*,G¥,B} (4,2,2,3,1) is as small a minimal node-sufficient
set as can be found for P,(0). Let us also take advantage of the fact that the
interval (G®,C) is ambiguous in this scale, and therefore “resolve” it to an
unambiguous interval (as F-B to E~C in C major). The final chord will contain
E and B so that the tonic, E, is reinforced by the resulting difference tone
(assuming conventional timbres). Notice that P,(0) is conventionally heard as
“A minor”, not as a mode with E as a tonic, as in this example:

Example 13
N1
4 |
Véa) <
%

P —3p

i b |

[#]
1

NP
TO

BA careful analysis of the rules of the “serial” (i.e., “twelve tone”) technique will show that
they prejudice the composer in favor of writing successions of graph-sufficient sets for the “twelve-
tone scale” and avoiding tonal centers (modes). Examination of works of well-known “serial”
composers (e.g. Webern) will show that such is done in excess of the demands of the rules of the
technique.




86 D. Rothenberg

Similar examples can be constructed using the chart in Figure 5. Of course, §
if a node-sufficient set contains more than one node-minimal subset the identifi- §
cation of the scale is strengthened. A common method is to use all the tones of a
scale in a cadence. Oliver Messiaen’s music abounds with such examples. Here is
an excerpt from the third song, “Dance du Bebe-Pilule” of his “Chants de Terre
et de Ciel”." The scale is Py(1)=D®EP EF* G,ABC (Y (P)=(21,2
1,2,1,2,1)) where E® is the tonic:

Example 14.
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Notice that, with appropriate labeling of node-sufficient (or graph-
sufficient) sets, it is possible to extend the traditional “figured bass” system to
apply to non-diatonic music.

On such a basis new methods of teaching musical “ear training” can also be
suggested.

Condition (c) at the end of Section 15 pertains to “color changes” between
“chords™ in diatonic cadences. The following discussion is relevant to such
differences and similarities between sets of tones in non-diatonic music.

20. Image Distance

Consider two sets, H, and H,, which are not graph equivalent. If the graph G is
altered by the removal of certain points, these sets will become graph equivalent,
The minimum number, X, of such points which must be removed from graph G
for H,(x) and H,(y) to become graph equivalent is equal to the cardinality of
the symmetric difference between their respective V' (H,) and ¥ (H,) (Section 17,
at the beginning):

X=card(V(H UV (H))-(V(H )NV (H,)).

In order to arrive at a measure for the disturbance which must be induced in
that portion of the graph G which is pertinent to the classification of H, and H,,
we divide X (above) by the cardinality of that portion (ie., card(V(H)U
V(H,))). A number between zero and one results which we call the image

4Elkan-Vogel Co., Philadelphia, Pa. (U.S.A.). Copyright by Durand & Cie, 1939.
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tance, 1-(H,,H2)‘, of H, and H,:
card(V(H,\ YN V(H,))
card(V(H,)UV(H,))

7 In computing the cardinalities in the above expression all elements of the
- sets being evaluated are, in effect, assigned equal weight (i.e., 1). This corre-
_ sponds to assigning equal likelihood to all sets on the graph. This is rarely the
- case in actual music, where some scales and/or keys are more likely to occur
.~ than others. However, (1) above is easily modified by assigning different weights
(altering the cardinality function so that a set may be counted more than once)
to each point on the graph. Such weighting, however, will not alter the ordering
of the image distances between any two pairs, H,(x) and H, (y). in the examples
which will follow. Note that image distance provides a more comprehensive
_ telation between “chords” than the common criteria of “the number of common
“tones” and “the relation between roots”. By use of the chart in Figure 5 the
reader can verify that the well-known order of similarity relations between triads
in the same and different keys can be derived from image distance (e.g., {CEG}
is less similar to {(F¥ A*C*} than to {DFA)). If such similarity relations are
intended to apply only to diatonic music, all scales except the major (Y(P)=
(2,2,2,1,2,2,1) and melodic minor ($(P)=(2,2,2,2,1,2, 1)) should be eliminated
from the graph. For most nondiatonic music it is probably appropriate to
eliminate P,(x) (Y(P)=(2,1,1,2,1,1,2.1, 1)) for all x.

More sensitive discriminations than the familiar criteria for similarity be-
tween triads are thus provided. The following less obvious examples are chosen
so that the number of common tones in each corresponding pair is the same, so
that “positions™ of corresponding “chords” are identical, and so that the effect
of tonality is minimized. Py(x) for all x is eliminated from the graph (although
its inclusion does not alter the ordering of the different 7), P,(0) is included
(hence 7%1 and distinctions result between pairs of sets whose intersections
belong only to P,(0)), and no weighting of different graph points is used. In both
examples the second pair has a larger image distance than the first. Example 15
is about as subtle a case as can be constructed in twelve-tone equal tempera-
ment:

[(H,H,)=1- (1)

Example 15. Example 16,
) é r__p i
i X I 4 ¢ }
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1=2/5 I=6/7 1=2/3 I=6/7
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(B)=(6.51)onC (B)=(8.1.3)onC

(v)=(6,5,1) on D® (y)=(8.1,3)onB
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The first pair of Example 15 cannot be compared with the first pair of
Example 16 without alteration, because both pairs are subsets of P4(0) (Y(P,)=
(2,1,2,1,2,1,2,1)) so that hearing one pair facilitates classification of the next.
This can be overcome by transposing (changing the key memberships) of one of
the pairs, but then difficulties in avoiding differences between the pairs with
respect to dissonance and tonal implication arise. Also, sequences must be
avoided, since these generate expectations which facilitate acceptance of the last
chord in the sequence. One must attempt to equalize the pairs with respect to all
properties except image distance. About the best that can be done in this respect
when comparing the first pair of each of the above examples is shown below.
However, the voice leading in the first pair is not so smooth as in the second,
thereby tending to increase the sense of difference between the first pair relative
to the second. (This prejudicial condition can be reversed by exchanging the
position of the B and C in the second chord of the first pair).

Example 17.

| ﬁ:g (0)=(8,1,3)on C { example 15

—: P— (B)=(6,5,1) on C | first pair
J P P r (v)=(8,3,1)on F [ example 16

: h-ﬁ — {(a)=(8,1,3) on B 1 first pair

vy- 1 o
transposed
P 4
afl Ya
=2/5 1=2/3

Of course, I remains relevant if each of a pair, H, and H,, appears in a
melodic sequence instead of in a chord progression.

21. Graph Distance

Just as the image distance between a pair, H, and H,, derives from those points
by which each of such pairs may be classified, the graph distance between a pair
of points on the graph, P,(x) and P,(y), derives from those graph points which
may be classified by each of such pairs. Graph distance is a relation between
keys of scales and is thus relevant to musical “modulation”.

A graph point (a particular key of a scale), P,(x) is often selected as a
classifier for some H=H, U H,U ...; each of which H, may be classified by
some graph point which is a subset of P,(x). (This will occur when the “stimuli”,
H\,H,,..., are contiguous, occupy little time, and when the union of graph
points by which each of the H, are classified forms a set which is graph-
sufficient for P,(x).) Hence a graph point is characterized by the other graph
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points which are subsets of it.'> Accordingly, we define W (u,x)={P,(y)|P.(»)
‘CP,(x)}. Note that W (u,x) derives from set inclusion in the direction opposite
to that of V' (H) (Section 17). _

Then the graph distance, D(u, x, w,z), between two graph points, P, (x) and
P,(z), is defined (analagously to I(H,H,)) as

card{ W (u,x)n W(w,z))

b—(u.x,w,z)=l~ - — .
card( W (u,x) U W(w,z))

Graph distances are intended to correspond to degrees of perceived “simi-
larity”'® between keys of different musical “scales”. For example, the “major
scale” (C,D,E,F,G,A,B) appears to be more similar (in this sense) to the
“melodic minor scale” (A,B,C,D,E,F*,G¥), than does the “whole tone scale”
(C,D,E,F* G¥, A) (although each pair has the same number of common tones).
Since our notion of “scale” corresponds to “equivalence class™ | o[, and since a
given |la; || may have more than one member Y(P), each with corresponding
points on graph G, for certain applications it may be necessary to restrict graph
G to sets with a single ¢(P) in each ||a;|. That is, when two distinct sets are the
same key, mode, and scale (but different runings) ( Section 12), they are per-
ceived as “mistunings” of each other. It is thus inappropriate to consider both
such sets as lying on the same graph.'” Note, however, that when two such sets
are low'® on graph G and when the image distance between them is large. it is
unlikely that they will be heard as “mistunings” of each other.”” Thus it is
appropriate to place two distinct P in the same {ja;|j on graph G when they are
high on the graph and are of the same key and mode. This occurs in its worst
form when graph G is complete (i.e. closed under transposition) and two distinct
Y(P) in the same ||a|| have points on the graph.

Sometimes it is useful to speak of the “distance” between ¢(P) and ¢(Q)
rather than between P, and Q,, some pair of their respective graph points. (i.e.
“Is the major scale more similar to the melodic minor scale than the “whole tone
scale?”) Thus the scale distance, S(u,v) is defined as

S (u,0)= rgi)nﬁ (u,x,0,5)

The number (or humbers), {y — x}, which corresponds to the above mini-
mum, shows the relative keys which correspond to maximal similarity. (When

35For example, the “major scale” is characterized by its triads, seventh chords, etc.

16Note that our conception of “scale” makes no distinction between “modes™ (tonal centers) of
a key of such a scale. Hence the “similarity” which is referred to above is distinct from that
similarity which results from relations hetween tonics of keys of scales (except when the discussion
to follow applies).

"Such problems often arise when m > 12 (e.g.,, m=31).

3We use the convention that sets appear above their subsets on graph G (see Figure 3).

®There is one such case when m=12; P=(C,E.G?,B® and Q=(C,F,G"B) (for which
¥(P)=(4,2.4,2) and ¥(Q)=(5,1,5,1)) are in the same equivalence class, but there is little perceived
similarity because classification ordinarily occurs higher on the graph by different graph points in
each case.



—
E

90 D. Rothenberg

graph G is complete, x (or y) may of course be arbitrarily set without affecting
the value of S'(u,v).) In the musical application we may also choose which tonic
(“mode”)? should be assigned to each of such a pair of keys of scales to achieve
greatest similarity: When there is more than one tone common to both (keys of
scales), assign the tonic of both to that tone which is best supported by the
difference tones and harmonics generated by the tones of each of the pair of
keys (cf Part I, Section 2). (These harmonics and difference tones are dependent
upon the timbres being used.)

It is now known that a wide range of inharmonic residues have definite
pitch?! (i.e., a sensation of pitch occurs even when the partials are not integer
multiples of a fundamental), and in such cases extremely unfamiliar intervals
may sound *“pure” or “constant”®® and familiar “consonant” intervals may
sound “dissonant” or “impure”.*® Sometimes a tone which is well supported as a
tonic in both of the keys (above) cannot be found, such that footnote 24, Section
7 of Part I is pertinent, and the above procedure does not apply.

Note that implicit in the above interpretation is the assumption that the
perception of differential similarities between different pairs of scales (learned
“mental reference frames”) is always dependent upon those other scales which
have been learned by the listener and such of these whose use he may anticipate
in a particular situation; e.g., the same listener’s expectations will differ (as will
graph G) when listening to classical Western music and to twentieth century
Western music.

22. The Effect of the Graph upon the Tuning of Scales

Previous to this, we have discussed restrictions on “mistunings” of the elements
of a proper subset such that it retains its propriety (Part 1, Section 8) and also
restrictions on such mistunings so that any proper or improper scale retains its
identity (Part 2, Section 10). The relevance of these different restrictions to a
particular P, (x) depends upon the structure of the graph in which it is em-
bedded.

Consider a graph which contains one and only one point, P, which is a
proper set. Note that when axioms 2.2 and 2.3 apply (as they do in Western
music) and the elements of the scale are distributed so that adjacent pairs form
equal “intervals” (in P X P), R (the union of the ranges of all the elements)
covers S ((9) of Part 1, Section 4).2* Note also that the cardinality of a proper P
and its corresponding code are identical. Thus it is possible to classify any

2Mode™ is here used to indicate the particular tonic of a scale in the sense that the different
“church modes™ indicate different tonics in the major scale.

2igee J. F. Schouten, R. J. Ritsma and B. Lopex Cardozo, “Pitch of the Residue™, [16] and also
J. E. Evetts, “The Subjective Pitch of a Complex Inharmonic Residue”, [17].

22We are here referring to “acoustical consonance™ as described by Helmholtz (in terms of
coincidence of harmonics and beats), not to qualities of intervals deriving from context, (e.g.,
ambiguity, etc.).

2In fact, consistent alterations in timbre (especially of this type), when coupled to change in
pitch, can alter the initial ordering (see Part 1, Section 2).

24In fact, it is sufficient that these “intervals” form a repeating sequence of two magnitudes
only ((8), ibid)).
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~dlement of P as a “mistuning” of an element of another proper set, P, with the
“same cardinality whose points are equally spaced. When several elements of P
“are simultaneously presented, S-proper modifications apply, and the interpreta-
“tion of elements of P as mistuned elements of P is restricted. Note, however,
that R (the union of all S-proper modifications)= R (Section 5), and since
'R=S, great latitude remains. Thus, when tonality is a factor, it is usually
possible to adjust the tuning of the elements of P so that each temporary tonic is

_reinforced (by different tones and harmonics) as it occurs (this often happens in
performances of “free twelve-tone” music). In this fashion nearly all unfamiliar
proper scales with the same number of elements may appear on first hearing to
be different tunings of a single proper scale (provided, of course, there is only
one point on the graph). This phenomenon is familiar to Western musicians who
have experimented with exotic tunings of seven tone scales—when such scales
are proper they often tend at first hearing to sound like mistuned major scales
(or modes of such scale).? This also accounts for why it is sometimes erro-
neously stated by unsophisticated listeners that the pattern of the type of
pentatonic scale in China and Thailand can be represented by the black keys of
the piano. (The Thai pentatonic scale is extracted from a seven tone equal
temperament system, not a twelve.)

Suppose P is no longer the only point on the graph. Since it now 1s
necessary to be able to distinguish between P and the other graph points, the
above discussion no longer applies. Even if all the graph points are different
keys of the same scale, sufficient sets for each such key must be identifiable.
That is, each mode of the scale must be distinct and hence each column of [iay|
must be distinct. Hence, in music where one of many scales and keys (or modes)
of such scales may be used, mistunings of elements of a particular P are
restricted according to E-ranges or SE modifications both when P is proper and
improper (Section 13). When graph points are keys of different scales, it is
necessary to express each y(P) in the same number of units per cycle, m (the
cardinality of P,(0)). The larger m is, the more stringent may be the restrictions
on the mistunings of the elements of the individual graph points. That is, all
graph-sufficient sets must now maintain their distinctness. (It is worth noting
that, when experimenting with unfamiliar synthetically constructed musical
scales, apparent resemblances between different proper scales of a given cardi-
nality tend to disappear as soon as different keys of such scales are used In a
musical composition).?® Thus the entire graph of mental reference frames
available to a listener and relevant to his expectations at a given time influences
the limits of permissable deviations in tuning.

23. Propriety, Redundancy, the Graph and Musical Form

In general, musical form derives from a number of symmetries between different
portions of a composition ranging from very small to very large units (e.g.,

50f course, this effect can be easily overcome if sufficiently exotic tone colors are chosen-
—especially those utilizing inharmonic partials.

26This has been reported to me by musicians who have experimented with equipment for
producing such synthetic scales.

!
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motifs, phrases, sections, etc.). To a large extent the types of such symmetries are
bounded by the materials used which determine the properties with respect to

which symmetries (equivalence) can occur. Helmholtz writes concerning the

consequences of “definiteness and certainty in the measurement of intervals for
our sensation™":?’

Upon this reposes also the characteristic resemblance between the
relations of the musical scale and of space, a resemblance which appears to
me of vital importance for the particular effects of music. It is an essential
character of space that at every position within it like bodies can be
placed, and like motions can occur. Everything that is possible to happen
in one part of space is equally possible in every other part of space and is
perceived by us in precisely the same way. This is the case also with the
musical scale. Every melodic phrase, every chord, which can be executed
atany pitch, can be also executed at any other pitch in such a way that we
immediately perceive the characteristic marks of their similarity.

Such a property (which amounts to a set of tones retaining their identity as a
“Gestalt” when “inversion” (permutation of the order of the elements) occurs, as
we have seen, is possessed only by proper scales, in fact only by strictly proper
scales. Hence Western music using the major scale makes extensive use of modal
transpositions of motifs. Since the major scale is also very high in efficiency,
melodies sometimes depend upon phrases where doubt is not immediately
resolved. Also, since the major scale has many proper subsets (see Part I, Section
8 and Figure 1, Part II, Section 13) and many intervals with roots (see the
discussion preceding Figure 1) melodies make use of principal-auxiliary tone
relationships determined harmonically (harmonic and non-harmonic tones),
rhythmically, and/or by the ambiguity of the tritone. Notice again that the
“figured bass” system is composed of the proper subsets of the major and minor
scales. Hence these retain their identity when “inverted”. This is not the case
with improper sets. E.g.

Example 18.

L oa
Q() (4]
el D

Note again that a strictly proper set which is low in efficiency (or graph-
efficiency, if appropriate) retains motivic symmetry as one of its principal
compositional resources. Hence it is not surprising that the twelve-tone system
uses motivic material as its chief resource and that the historical progression
from modal to chromatic music in the West has been characterized by an
increased dependence upon harmonic material and motivic symmetry.® It is

*Herman Helmholtz, On the Sensation of Tone... {1}, page 370.

BClearly, music written purely in the whole-tone scale would be even more motivically
dependent, since harmonic resources are sparser.
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also of interest to note that the existence of an ambiguous interval in a proper
scale with high stability compensates for a loss in similarity between certain few
modal transpositions of motifs by facilitating partition into principal and depen-
dent tones and by increasing the effect of cadences (Section 16 and the remarks
following Figure 5).

In the case of improper scales not all the above resources are available.
Motivic similarities are not possible between all portions of the scale without
severe distortion (which, of course, can be deliberately utilized). Also, the
requirement of instantaneous measurement of intervals necessitates a partition

~ into principal and dependent tones and /or the firm fixing of a tonic (Section 8).

Since sufficient sets with as few elements as possible facilitate identification of
the tonic and /or principal tones, low efficiency (high redundancy) is extremely
important for the use of improper scales.”” In fact, low efficiency is of greater
significance to the use of improper scales than high efficiency is for proper
scales, since only a small part of the compositional resources of proper scales are
sacrificed by low efficiency. However, failure to identify the tonic and/or
principal tones of an improper scale until many tones had been heard would
decimate compositional materials. That is, the principal resources of melodic
form when improper scales are employed are those symmetries which depend
not upon similar interval relations, but upon similarities between sequences of
principal and dependent tones. (Also, the non-invertability of improper scales
and the “tense” quality of contradictory intervals have expressive potential
which can be exploited by the use of symmetries and distinctions derived from
such properties.) The above speculations are confirmed by the ethno-musico-
logical investigations undertaken thus far.

The symmetries referred to above can be quite subtle, such as harmonic
sequence in Western music and nuclear theme in Javanese music.’® Many more
abstract relations (and relations between relations) can be found in sophisticated
music. Just as the choice of materials determines those symmetries which are
recognizable at lower hierarchical levels (e.g., the motivic level), the choice of
such symmetries in turn circumscribes the relations at the next higher level (e.g.
phrase). Upon such decisions the musical characteristics of a culture and of
individual style depend. By way of analogy it is of interest to note that many of
the properties of spoken languages are consequences of the choice of materials.
For example, the fact that Chinese words generally consist of only one syllable
coupled with the variety of words in the commonly used vocabulary may
necessitate the superimposition of sliding tones (which Chinese uses) in order to
avoid ambiguity.

Here we have studied those relations which apply at the “phonemic level” of
musical languages and some relations which apply at the next hierarchical levels
(ie., “motif” and “phrase” level). Many of the relations which may apply
between units at the level above the phonemic level are circumscribed by the
points on the graph G, of expected “reference frames”. As we have seen, the
graph G, is utilized to define equivalences between sets of tones with respect to
properties defined on the graph. The removal or addition of graph points alters

BUnless, of course, the tonic is fixed in advance by a drone.
¥See Mantle Hood, “The Nuclear Theme...” [5].
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such equivalences (upon which available techniques of musical composition
depend).

Note that at any hierarchical level in a musical composition the identifica-
tion of the units themselves (e.g., “motif”, “phrase”, “sentence”, “section”)
depends upon the properties with respect to which symmetries or equivalences
occur. In unfamiliar music these properties (as well as the identity of the units
dependent upon such properties) are often difficult to determine. (For example,
it is very difficult for a Western listener to extract the “nuclear theme” from
Javanese music.) Work is in progress which treats the problem of symmetries at
all musical hierarchical levels. This consists of an adaptive model and algorithm
which attempts to reduce actual music to a symbolic form (which represents the
relevant symmetries, relations and properties) which, in turn, is used for synthe-
sis. The reconstructed music is subject to feedback provided by a listener who
indicates where the synthesis has been successful. The algorithm then alters the
symbolic representation and convergence is attempted by repeating the proce-
dure iteratively. This work will be described in another paper.

Computer programs which perform the computations described in this
paper are available on request, as are tables of such computations for unfamiliar
“reference frames”, These are discussed in the next paper in this series.

24. Description of Equipment and Proposed Experiments

- Only a very brief description will be given here of experiments and equipment
- for testing the theory. The equipment is nearly complete and experiments are
o expected to begin shortly. Ethnomusicological testing of the theory, however,
L. has already yielded positive results and such information is available on request.

Several reference structures (“keys” of “scales” where the tonic is not fixed
—henceforth called “structures”) can be constructed in which a particular
interval 1s acoustically identical in all, but is ambiguous in some cases and
unambiguous in others. It is predicted that, for a single subject who learns two

; structures, the perception of such an interval common to both will be more
b5 difficult and less accurate after manipulating and listening to that structure in
Ei‘ which the particular interval is ambiguous. A keyboard controlled device is

¥ presented to the subject which produces all tones in a particular structure and no
others. The keyboard is arranged so that no information other than a correspon-
dence between direction and the raising and lowering of pitch is provided. The
structures used are, of course, unfamiliar to the listener (the keyboard device is
capable of producing any set of tones with less than thirty-two elements within
an octave). The subject is asked to manipulate the device until he feels he is able
to anticipate any pitch from the surrounding pitches he produces. This is
checked by asking him to tune (adjust the knob on) an oscillator with continu--
ously variable frequency to a given pitch when deprived of the freedom to
produce it on the keyboard. This 1s accomplished by disconnecting the lever on
the keyboard from the output of its corresponding oscillator. Alternatively, the
subject may be tested by being required to select the missing pitch from several
alternatives presented to him.
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Several tests are made with different frequencies eliminated in this manner.
 When these tasks are successfully performed the subject is removed from the
“keyboard. The experimenter then produces a sequence forming an interval
which is either “ambiguous”™ or “unambiguous” for the particular structure. One
of the two component tones is sustained and the subject is asked to match the
other tone by adjusting a variable-frequency oscillator initially set at the
frequency of the sustained tone. Alternatively, he is tested by being required to
select the tone from among several alternatives. His performance is measured
for accuracy and speed. The experiment is later repeated with the structure
exchanged for another in which the particular interval under consideration is
now ambiguous if it previously was unambiguous or vice versa. The structures
being used are selected so that their stabilities (S) are as nearly equivalent as
possible.

In another series of tests, tones nor in the structure are produced, and the
subject is required to match them on a variable frequency oscillator. We expect
errors to occur in the direction of those tones of the structure in whose range the
tone being matched lies, and such errors are expected to decrease as the
boundaries of the range is approached.

The results of the above test may be checked against those of another series
of tests wherein the subject is required to identify the tones not in the structure
with tones in the structure which are “most similar”. Such identification is
expected to differ when the same tone is presented in the context of two distinct
structures (even when tones in both structures which are adjacent to the tone to
be identified are identical in both cases), provided the tone to be identified lies
in the range of different tones in each structure.

Of course, the timbre of the tones used in the above experiments are of
central importance. The equipment will be capable of producing a large variety
of timbres. Nearly all the potentialities of a large electronic organ and of an
“electronic music synthesizer” are available simultaneously by the adjustment of
keyboard controls. Inharmonic partials (non-integer multiples of the frequency
of a given tone) can also be produced by the depression of a single key on the
keyboard. Such resulting timbres can differ for each tone in a key of a scale. In
this way the construction of cases where axiom 2.3 is violated will be attempted
(see the fifth paper in this series). In the experiment timbre will be adjusted for
each structure (which will often contain “irrational” frequency ratios) so as to
minimize its resemblance to other familiar structures (e.g., any key of a “major
scale”) and so that the construction of the initial ordering (as described in Part
I, Section 2) is as easy as possible.

Of course, all predictions tested by the experiments must take into account a
listener-dependent minimum pitch discrimination, ¢. In a series of tones each of
which differs from the previous tone by less than e, intransitivities in the relation
of apparent equivalence (between tones) may occur, (e.g., x=y, y=z and xZz).
Techniques for dealing with this situation are developed in the following section
and are applied to the computation of experimental predictions.

_ The mathematical model also predicts a discrete alteration in the stability
(S) of a structure and in the identity of its ambiguous intervals when certain
amounts of mistuning of the tones forming the structure has taken place (see

i
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Section 25, which follows). Thus the experiment previously described is repeated
with the different structures replaced by such different tunings of the same
structure (S now differs for both tunings).

Another set of experiments will be performed to check predictions of the
model concerning the function of sufficient sets. A particular structure (both
proper and improper sets are used) is connected to the keyboard and the subject
is instructed to manipulate and listen to the keyboard as before. He is then
removed from the keyboard and informed that he will be presented with a
sequence of tones belonging to this structure. However, he is also told that the
absolute pitch location of the structure will be altered between each sequence
(i.e. it may be in any key of the tuning of the scale). He is asked whether another
tone added at the end of the sequence belongs to the same structure (key of
tuning of the scale) as the preceding tones. He is presented with some sequences
which, exclusive of the last tone, contain sufficient sets for a key and to which
this tone does indeed belong, and some to which it does not. Some sequences are
also presented which do not contain sufficient sets. The subject’s responses are
checked for identity with the predictions of the model.

These experiments are repeated with a particular element of the reference
frame mistuned after the subject is removed from the keyboard. The limits of
such mistuning which permit identifications of final tones of the sequence are
checked against the computed E-range. These E-ranges are computed first for
the key of the scale used and then are enlarged as much as possible so that the
sufficient sets for each key remain distinct from those of other keys (which, by
definition, are on the graph). Both mistunings are tested, as are mistunings
which exceed such limits.

The experiments are again repeated with several elements of each structure
mistuned after the subject is removed from the keyboard. This mistuning is
varied as each sequence is presented. The variations are at first within the limits
defined by SE-modifications and then exceed such limits. The cases where the
subject produces both correct and incorrect identifications are correlated with
the various mistunings.

A final repetition of the experiment is performed when more than one scale
and its keys are on the graph. That is, before being tested, the subject is
permitted to learn more than one unfamiliar structure (scale). He is then
interrogated by being presented with sequences selected from keys of any such
scale.

One of the by-products of the acceptance test for a subject (wherein he is
required to produce missing tones in a reference structure to demonstrate that he
has learned it) is the length of time required for such learning to take place. This
will be correlated with the stability and propriety of the reference structures
learned, and with the component intervals and the tone colors used.

Note that in these experiments, equipment is used which permits the subject
to learn by producing stimuli. This is deliberate and derives from well-known
theories and experimental results indicating that both visual and language
learning is facilitated by such methods. Musical examples are well known. The
teaching of musical dictation is much facilitated if the student is previously
taught to sight-sing. Note also that in the acceptance test, when a subject is
asked to produce a tone that has been eliminated from a learned reference
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ﬁme, he is provided with feedback to his response other than just “correct” or
‘incorrect”. He may subsequently check himself by producing the correct tone
: {which is immediately reconnected to the keyboard).

The equipment used in the experiments also is useful as a musical instru-
‘ment capable of exploiting new musical materials. The variety of pitches and
.tone colors available as well as the construction of its keyboards are suited to
this purpose. These aspects of the equipment will be described in a subsequent
paper covering details of the musical application.

25. The Use of a Listener-—Dependent ¢.

For application to the perception of tones we must consider that it is impossible
for a listener to order two intervals (or determine that they are distinct) when
these differ by less than some small £ (dependent upon the listener and the
timbre being used). This ¢ is an interval selected from § X S and may therefore
be compared with any interval in P X §. Accordingly when addition is defined
as in Part I, (2.4) we define P to be strictly e-proper when

41— ;4| > € forall i j, k.
Analogously the e-stability of P is defined as

§€= 1 —card {(i,j)

oy = nf (41,)] <o V]ay = 5Up (o, 1. 0] <e | /n(n=1)

(i=1,...,n—1yj=1,...,n)"

(n 1s the period and m is the number of units per octave.)

If |la;|| is strictly proper and ¢> T (7T in the sense of Part I, Section 3)
clearly |la;|| is not strictly e-proper. However, ¢ will usually be used when a
specific |19,/ has been selected, and for such cases only we define the average
tolerance

(g7
i=0

Note that if S, is computed with a fixed e, S, will be decreased from this
computed value when ¢ is increased to the point where ¢2> T,, where 7, is
defined as follows:

If T.<e, T/ is computed thus: Define V,=max;(a,), D, ;=min(a,,, ).

Delete from the row i+1 all entries «;,,; for which a;,, ,— V;<e; call the

31 Note that a single element of row i may be within & of elements in both rows i—1 and i+ 1.
Hence the symbol “\/” (or) appears in the formula for S, so that such elements are not counted
twice.
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smallest one remaining a,HJ and set b=a,,, ;— V,. Now delete from the row i
all entries o, for which D, =a; <e; call the largest remaining one a;; and set
c=D;, —a; T =min(b,c). If T ze I/ =T, T,=min(T}).

77 will be called the e-row tolerance and T. the minimum e-tolerance. It is to
be understood that 7 and 7, will be intervals in P X S unless a particular ||a;|
is specified. in which case they will assume nuraerical values.

T, corresponds to the pitch discrimination required of a particular listener

for the computed value of S to apply to his perceptions.

For the application to the perception of tones, which usually involves an
octave cycle, we will assume that all {8} which are members of the same ||
are drawn from sets,? S, such that the same interval corresponds to an octave
cycle for all ||§;]| €]le;;|| and € is the same interval for all ||§] €} i e II. Theneisa
constant fraction of an octave: that is for all |8, /] Ef!a,;l € / m is constant.”

Hence the structure of the equivalence classes is affected by considering two
intervals which differ by less than e as “equal” (note that this is not an
equivalence relation since it is possible that i, =i,, i, =i and i,#,):

(a) All ||a;|l will have a finite number of members since when m is so large
that

€>Il}il’l( éklw #8) (y
ikl
the ordering of the §; is altered so that [|8,]| is no longer a member of |« .

(b) Those | a, ]| where Y(P)* (K and m are minimum) is such that (1) applies
will be empty. (See Section 11, Part I11.)

(c) Some ;| will acquire additional members in cases where m is such that
marginally unequal intervals become equal so as to cause the ordering to
coincide with that of |, i.

Since, when we consider two intervals which differ by less than ¢ as equal,
we are no longer dealing with an equivalence relation, the equivalence class
notation used thus far fails (e.g. ¥(P)=(3,2,2,2,2) and e=1).

To remedy this we define two scales as e-equivalent if and only if whenever
two intervals in the first scale differ by ¢, so also do the corresponding ones in
the second and vice versa. The following notation realizes this in a way
convenient for automatic computation and the classes remain equivalence
classes; i.e.,

(gl =lagDA(ladi= el )=l ol =lia]].

Let 8(FP) be a vector containing the subscripts of all the terms of the first
n—1 rows of ||§,|l. The order in which these subscripts appear will be the same
as the ascendmg order of the values (§;) to which each such subscript corre-
sponds. When §,=§,,, i precedes k/ if i<k or f i=k and j<<l. All such
subscripts corresponding to equal values in [{§,]] will be enclosed by brackets.

#In most cases it may be assumed that all | 18,1 € eyl are drawn from the same set S.
1t may well be that ¢ is a function of 7 ( the number of scale-notes per octave). In such case, 7
is constant for all members of an equivalence class, and ¢ may be experimentally determined.




: 3 2 3 2 2] [2 1211
=] 35 s 4 s lag=ld 4 4 3 4
8 7 7 71 7 ol §6 5 5 5 5
10 9 10 9 10 18 7 8 7 8
B(P)=(12.1,4.1,5)(1,1.1,3)2:4(2,1.2.2.2.3.2,5)(3,2.3.3.3,4.3,5)

3.1(4,244)(4,1.4345)

we use the symbol “ ¢ to denote that two intervals differ by less than e,

iP) € (pkp,)]/\[(pkpzf (P INP.P) & (PP )I=1(pip) <(Pip) <(PgP,)]
v V[(pqp,)<( P P) <(pip))) Hence B(P) can be modified so that brackets en-
~dlose all terms which are ¢ and the properties of an equivalence class are

i mtained In Example 19, if e=1,
) B(P)=(1,2.1,4.1,5(1.1.1,3)(2,4)2,1.2,2.2,3.2,5)
| (3,2.3,3.3,4.3,5(3,1)(4,2.4,4)4,1.43.4,5)
" ‘
where the first left-hand bracket pairs with the first right-hand bracket, the
it second left-hand with the second right-hand, etc.
0 Using this notation different Y{P)s can be mapped into corresponding

B(P)s using the relation of ** ¢ ” and these B(P)’s mechanically compared for

identity.
o on(n—1)
When T, >0 only the first

£

terms of B(P) are needed,* and the
absence of one bracket in the final pair will indicate equality of the last group of

n terms to a term not shown. Also, the row subscript of 8,j can be omitted in these
y cases if a partition sign “|” is used to separate rows. Hence the above example
€ becomes:

B(P)=(2.4.5(1.3)|(4)1.2.3.5).

If any particular element of P, say P,, is altered by an amount, ¢,, there will

| exist some maximum positive and negative values of ¢, for which P will remain
t 3 in the same equivalence class, 1.e., E-range, see Section 10. If, as above, the
¢ 1 relation of “¢” is used instead of “=" in the mapping, these maxima will be
‘ altered.
h Note that if ¢, is added to p, only certain elements of 8 are altered. Since
. 6ij—p,+1 p,» these are §, and §,, _, for all i<n. If g, is posmwe all §, are
_ 3T, > e guarantees that no terms from the remainder of |{§, ;|| enter into the total ordering of the
n n(n—1
first (n2 ) terms—see Part I, Section 6.
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reduced and all §, , _; are increased. If ¢, is negative, the reverse is true. Let ¢
and @, represent the maximum positive and negative values respectively which
@, can assume without altering the equivalence class membership of P. An
examination of all possibilities yields the following formula:

g;r; 1/ 208 = 8 s i €)||04-— 8| <€
il \1/2084 =84 i F€)|8y =8, >

o = min Sy—ai’k‘iif“ai.k*i_—slf'<€
max

i’jyl 6U~8',k*i:€'81j'—”6i,k*i>e

1

8y — 8, F €8, —8,>¢

where the upper sign (“+ or “—"" or “min” or “max’) corresponds to ¢, and
the lower to ¢, . The formula® is deliberately written redundantly to indicate
the procedure for efficient computation.

The above indicates that each equivalence class when the relation “ ¢ ” is
; used has both a maximum and minimum pitch discrimination necessary for its
apprehension. & corresponds to this maximum; i.e., intervals which differ by less
than ¢ must not be distinguished. Let ®=min, (|¢;'|,|9, ). Then @ corresponds
to the minimum; i.e., intervals which differ by more than this amount must be
distinguished.

We now define an e-sufficient set Q,, as previously, except that the meaning
of “subset” is altered: A set of points Q* is called an e-subset of P if all points of
Q* correspond to points of P biuniquely in such a way that the difference
between any pair of points in Q* and the difference between the corresponding
pair of points in P differ by no more than e.

An e-minimal set is an e-sufficient set which contains no proper subset’
which is e-sufficient.

e-efficiency, E, is defined similarly to efficiency except that e-sufficient sets
are used.

Also, EC and E/ are the same as £¢ and E" respectively, except that ¢ is
involved in the determination of the graph and node-sufficient sets respectively.
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